
HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018 1

A study on the Iterated Prisoner’s Dilemma
Elia Bonetto, Filippo Rigotto, Luca Attanasio and Francesco Savio

Department of Information Engineering, University of Padova – Via Gradenigo, 6/b, 35131 Padova, Italy
{eliabntt94,rigotto.filippo,blackwiz4rd,francesco.savio196}@gmail.com

Abstract—In this work, the popular Iterated Prisoner’s
Dilemma game is analyzed in different matching scenarios: (i)
the classical version between two players, (ii) a generalization of
the classical version between multiple players, (iii) an extension
of (ii) allowing the population of players to evolve or (iv)
allowing players’ strategies to randomly change between rounds,
according to a gene representing the grade of cooperation.
Rounds’ statistics are collected to have an insight on which is
the best strategy, if there is an absolute winner, which is the
evolution and which is the players’ score of each scenario.

I. INTRODUCTION

THE Prisoner’s Dilemma (PD) is a classical game analyzed
in Game Theory which attempts to model social and

economical interactions. It is a dilemma because, if exploited
to explain the emergence of altruism in human society or,
generally, in animal society, it fails badly at a first glance. The
game is based on a couple of players who have to make a
decision on whether to cooperate or not with their opponent.
As we will see shortly, even if the intuition tells us that the
best choice is to cooperate, the only win-ever strategy in a
one-shot game is not to cooperate (defect).

More insights on this aspect can be found in Section II
which gives a theoretical and mathematical introduction on
the Prisoner’s Dilemma problem and on its iterated version.
In Section III, we illustrate the strategies (the definitions of
the players’ ways of acting) we have implemented among
all the possible ones. Furthermore, in Sections [IV,V,VI,VII]
we explore the results of the simulations for each case study.
Section VIII is about a brief introduction and review of related
works approaching the problem by using machine learning and
artificial intelligence procedures, such as reinforcement learning
and evolutionary algorithms. Eventually, in Section IX, some
final considerations summarizing the analysis are presented.
All the tables of tournament results, statistics and additional
figures can be found in the Appendix.

All the code, developed in Python 3, is available on GitHub.

II. THE DILEMMA EXPLAINED

The classical formulation of the PD implies that given two
prisoners in a scenario where their conviction depends on
their mutual cooperation, they can either stay silent or fink,
respectively cooperate or defect. Another possible formulation
is by means of a trade-off game, the closed bag exchange:

Two people meet and exchange closed bags, with
the understanding that one of them contains money
and the other contains a purchase. Either player can
choose to honor the deal by putting into his or her

bag what he or she has agreed, or he or she can
defect by handing over an empty bag.

Mathematically, the PD can be expressed with linear algebra.
The key component is the Payoff matrix M , which quantifies
the reward of each player depending on whether he1 cooperated
or defected:

M =

(
R S
T P

)
where T (Temptation), R (Reward), S (“Sucker’s”), P (Punish-
ment) are integer numbers that satisfy the following conditions,
as proven by Rapoport [1]:

T > R > P > S; 2R > T + S

For example, T = 3, R = 2, P = 1 and S = 0, or T = 5,
R = 3, P = 1, S = 0, the default for all our experiments.
R is returned for both players if they both cooperate, P if

they both defect; if the two players’ actions differ, S is for the
player who cooperated and T is for the one who defected.

Similarly, each player’s choice (move or action) for a single
round can be represented by one of the two axis in R2, i.e.

uC =

(
1
0

)
or uD =

(
0
1

)
, where the first axis stands for

Cooperate and the second for Defect. Being u1 and u2 the
moves of the first and second player respectively, their rewards
r1 and r2 can then be computed as:

r1 = uT
1 Mu2 r2 = uT

2 Mu1

For a single-shot game, namely a game which is played only
once, the best strategy (choice of action) may seem for both
players to cooperate. If both players cooperate, this leads to a
good payoff which maximizes the global outcome, evaluated
as the sum of the payoffs for each of them. This is indeed
the Pareto dominating strategy. Here lies the dilemma: when a
player is facing the decision to cooperate or not, if he chooses
to cooperate, he also realizes that the best choice of action
would have been instead to betray the other player as this
leads, irrespective of the opponent’s move, to a better payoff
for himself.

Both players are rational, which also implies some degree
of selfishness, and that they are fully aware of the rules of
the game (they have common knowledge, using Game Theory
terms). In addition, they move simultaneously (so no one knows
the opponent’s move beforehand). Provided these statements
and by doing the simple reasoning explained above, the two
players will conclude that the best way of acting is to defect:

1For the rest of the paper, the player is considered a male, for the sake of
simplicity in writing. Of course, nothing changes assuming a female player.

© 2019 The authors. Licensed under Creative Commons Attribution – ShareAlike 4.0

https://github.com/eliabntt/iterative_prisoner_dilemma
https://creativecommons.org/licenses/by-sa/4.0/deed.en


2 HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018

this would lead to a slightly lower payoff if the opponent defects
(minor punishment), but to a higher one if the other player
chooses to cooperate, allowing them both to gain something in
any case, instead of risking to loose everything. As a result, the
only reasonable conclusion is that the only Nash equilibrium,
or the only way to always win this game in a single-shot
scenario, is to defect. Thus, we have just observed that the
Nash equilibrium is not Pareto optimal: playing cooperate is
not feasible since the player is in danger against a defecting
opponent. Hence, the only strategy in which nobody wants to
deviate is to defect, as also noted by Fogel in [2].

If repeated games are taken into consideration, this reasoning
could loose some meaning. In particular, this is the case of
the multiplayer Iterated Prisoner Dilemma (IPD), since time
and memory (history) must be considered and the combination
of the players may have some unexpected outcomes. Colman
supported this concept by indicating that the 2-player IPD
is different from the generalized N-player version, and that
strategies that work well in the first scenario may fail in large
groups [3], [4, p.142]. In addition, Grim Triggers, Tit For
(Two) Tat, random or even more articulated strategies can
be introduced, changing the balance of the game and of the
previously defined winning cases. Moreover, in this game,
or more generally in iterated games, the notions of Nash
equilibrium, Pareto optimal or evolutionary stable strategies2 do
not suggest new, efficient and interesting strategies since they
inherently loose some meaning due to the intrinsic nature of
iterated games [6]. Winning a game in this setup simply means
achieving a better payoff with respect to the opponents and
this could be carried out even without playing such strategies.

III. STRATEGIES

The strategy is represented as a function which outputs either
uC or uD. Based on the strategy, such function might depend
on one or both players’ history of moves, or on the number of
moves played up to that moment and so on. The strategy is
based on a probability density function. In this project both
probabilistic and deterministic strategies are used.

The strategies based on probability are:
Nice guy always cooperate (function’s output is always uC).
Bad guy always defect (function’s output is always uD).
Mainly nice randomly defect k% of the times, k < 50.
Mainly bad randomly defect k% of the times, k > 50.
Indifferent randomly defect half (k = 50%) of the times.

The deterministic strategies are:
Tit-for-Tat (TfT) start by cooperating the first time, then

repeat opponent’s previous move.
Tit-for-Two-Tat (Tf2T) cooperate the first two times, then

defect only if the opponent defected last two times.
Grim-Trigger (GrT) always cooperate until the opponent’s

first defect move, then always defect.
The strategies are considered static in case they apply the

same move at each iteration as in Nice guy or Bad guy, and

2A strategy is said to be evolutionary stable if it cannot be overwhelmed
by the joint effect of two or more competing strategies. As a matter of fact,
Lorberbaum, Boyd, Farrell and Ware proved that no pure or mixed strategy is
ev. stable in the long run, if future moves are discounted (see [5]).

dynamic elsewhere. These players’ strategies are generally
fixed in time, i.e. a player cannot change its strategy between
rounds, unless specifically requested by the case study rules.
Many more and much complicated strategies could be analyzed
and our implementation is open and structured so that it is easy
to add one strategy just by changing few lines in the code.

IV. TWO PLAYERS IPD
In this section, the IPD intercourse between two players is

evaluated: each player has an assigned strategy, he is unaware
of the opponent’s way of acting and he plays accordingly to
its strategy definition without the possibility to change it. Both
players know only their respective history of choices. Each
game is repeated for a fixed number of rounds, unknown to
the two players. The main metric evaluated as output of this
game is the winner, or in other words the one who achieves a
higher payoff at the end of the round.

The number of iterations is set to 50 and can be modified
by means of a simple option when launching the program.
This could also be seen as the number of moves during the
match, and is a factor unknown to the players; if otherwise,
a smart player could adopt a supposedly optimal strategy: for
example, against a Nice (or TfT) strategy the best choice of
action would be to cooperate in all but the last round, gaining
advantage from knowing the number of runs, as inferred from
a backward induction reasoning. Results do not depend on this
value if only deterministic strategies are employed; conversely,
it will slightly influence the random ones. Note that in every
simulation an optional seed value can be fixed, so as to have
reproducible results from the pseudo-random number generator.

All the possible combinations between players, which
represents each strategy presented in Section III, are evaluated,
including the case in which the player plays against himself
(or, similarly, against a player with the same strategy). This is
a simple repetition of the single-shot game with the addition
of memory and the possibility to add probabilistic and more
elaborated strategies, as it has already been highlighted. Since
the population is not a concern in this particular context (which
is a single A vs B game), the winning strategy in all cases
is to not cooperate, or, in other terms, the Always Bad guy
strategy, as expected.

As a matter of fact, in all scenarios Bad guy reaches at least
the same reward of the opponent, but more often it gets a
higher one as in Figures [2,3,4]. Furthermore, a game facing a
Bad guy against another Bad guy as in Figure 1, or similarly
against a Mainly bad (Figure 4), leads to the same cumulative
reward for both players in the former case or almost the same
in the latter. The obtained reward is not as good as if players
were playing against (mainly) nice strategies. This is a first
important insight that verifies and points out what has been seen
from a theoretical point of view earlier: defecting is always
a winning strategy, but it may be non-optimal; on the other
hand, if both are cooperating, so playing the Pareto optimal
combination, each of them gains more in terms of payoff and
would get an advantage if they choose to defect against the
other. In the latter case, memory is important as it allows
revenge and reactive strategies to exist, keeping in mind that
the total number of rounds is unknown.



BONETTO et al.: A STUDY ON THE ITERATED PRISONER’S DILEMMA 3

0 10 20 30 40 50
Iteration

0

10

20

30

40

50
Cu

m
. r

ew
ar

d
2 pl. game: Bad - Bad

P.1 Defect
P.1 Cooperate
P.2 Defect
P.2 Cooperate

Figure 1: Score evolution, Bad vs Bad

0 10 20 30 40 50
Iteration

0

10

20

30

40

50

Cu
m
. r
ew
ar
d

2 pl. game: Bad - TitForTat
P.1 Defect
P.1 Cooperate
P.2 Defect
P.2 Cooperate

Figure 2: Bad vs TfT

0 10 20 30 40 50
Iteration

0

50

100

150

200

250

Cu
m

. r
ew

ar
d

2 pl. game: Bad - Nice
P.1 Defect
P.1 Cooperate
P.2 Defect
P.2 Cooperate

Figure 3: Bad vs Nice

0 10 20 30 40 50
Iteration

0

20

40

60

80

Cu
m
. r
ew

ar
d

2 pl. game: Bad - MainlyBad (k=72)
P.1 Defect
P.1 Cooperate
P.2 Defect
P.2 Cooperate

Figure 4: Bad vs Mainly bad

Taking a closer look, the combination of Nice and one
between TfT or Nice leads to better payoffs at the end of the
runs as in Figures [5,6,7]. The underlying idea is that both
players are getting the highest reward, not just one of them,
and these choices are cumulatively better, compared to the
Bad-Nice combination.

The TfT strategy is interesting, because TfT leads to almost
the same cumulative reward as the opponent, and it is highly
adaptive, even if it is fast-forgiving when it plays against a
mainly bad strategy. In other words, TfT is robust because it

0 10 20 30 40 50
Iteration

0

20

40

60

80

100

120

Cu
m
. r

ew
ar

d

2 pl. game: Indifferent - TitForTat
P.1 Defect
P.1 Cooperate
P.2 Defect
P.2 Cooperate

Figure 5: TfT vs Indifferent

0 10 20 30 40 50
Iteration

0

20

40

60

80

100

120

140

Cu
m
. r
ew
ar
d

2 pl. game: Nice - Nice
P.1 Defect
P.1 Cooperate
P.2 Defect
P.2 Cooperate

Figure 6: Nice vs Nice

0 10 20 30 40 50
Iteration

0

20

40

60

80

100

120

140

Cu
m

. r
ew

ar
d

2 pl. game: TitForTat - Nice
P.1 Defect
P.1 Cooperate
P.2 Defect
P.2 Cooperate

Figure 7: Nice vs TfT

0 10 20 30 40 50
Iteration

0

20

40

60

80

100

120

140

Cu
m
. r

ew
ar

d

2 pl. game: TitForTat - TitForTat
P.1 Defect
P.1 Cooperate
P.2 Defect
P.2 Cooperate

Figure 8: TfT vs TfT

never defects first and never takes advantage for more than
one iteration at a time [2].

In addition to these considerations, simulations were per-
formed multiple times to get insights of the mean and variance
of the rewards ruling these games. It is obvious that the static
strategies (as the Nice-Nice, Figure 9), or the non-triggering
ones, or the ones without variations have constant mean and 0
standard deviation. On the other hand, it is interesting to notice
that random strategies have a non-null variance, as shown in
Mainly Bad-TfT, Figure 10. However, this does not imply that
TfT could ever win against such a strategy, it is only pointing



4 HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018

out that there is a variation on subsequent runs based on the
randomness of at least one of the two players: the TfT strategy
is a reactive strategy so it will be always “late”, meaning that a
player applying it will always have at most the same points of
the opponent at the end of the game. There may be particular
cases where a Mainly Nice player may defect a Mainly Bad
opponent but these are just outliers in the overall simulation.

Nice Nice
142

144

146

148

150

152

154

156

158

Re
wa

rd

Means and std for 10 iterations

Figure 9: Nice vs Nice

TitForTat MainlyBad (k=72)

80

85

90

95

100

Re
wa

rd

Means and std for 10 iterations

Figure 10: TfT vs Mainly Bad

Moreover, it can be seen that the only strategies that reach
0 as a final payoff are the Nice ones, while the TfT, Tf2T, GrT,
Bad have a higher minimum value.

It is impossible to make the optimal score against all
strategies. The most intuitive reason is a consequence of the
first move: to play optimally against a Bad guy, it is necessary
to defect at the first round, and, as already discussed, to play
optimally against GrT (or equivalently TfT), it is necessary
to cooperate until the last round where you should defect [6].
But the number of rounds is unknown to the players and they
should know in advance the type of opponent: this would
enable them to adapt their strategy, but is not allowed by the
rules of the game.

Finally, two additional metrics have been introduced: yield
and achieve. Being p and q two players, each with a given
strategy, the metrics can be expressed as

yield(p) =
points(p)

optimal_pts(q)
achieve(p) =

points(p)

hoped_pts(p, q)

where points(p) is the number of points at the end of the
round, optimal_pts(p) is the maximum that p could achieve if
he knew q’s moves in advance, and hoped_pts(p, q) is the best

result player p can achieve in the optimal scenario or, in other
words, supposing that the opponent q would respond in a way
such that p could maximize his payoff. Yield represents how
well the player has performed against its opponent with respect
to the maximum that he could get if he knew its opponent’s
moves in advance, while achieve represents how far the player
is with respect to its best expectation.

The following considerations arise on the grounds of Table I.
The yield metric backs up our claim that Bad is the only
win-always strategy as it is the only one that gives a stunning
100% for all the matches playing a perfect move against every
opponent, a result that can also be seen in Table II. In other
words, a player using this strategy does not need to know in
advance which strategy the opponent is adopting. Moreover,
this metric points out how TfT, Tf2T, GrT strategies are more
resilient, namely, they respond well to strategies in that a player
does not reach its maximum achievable points, but performs
well irrespective of the opponents’ strategy. In particular, GrT
reaches scores over 90% even against (Mainly) Bad players.

The achieve column is a coupled metric that takes into
account both players. We notice once again that, ruling
out the same-strategy couples, TfT, Tf2T and GrT strategies
achieve results (almost) always comparable with the opponents,
meaning that they are at least as good as them.

On the contrary, taking the averages of these two metrics
with respect to all the subsequent matches, it can be seen from
Table II how the only strategies that achieve high performance
on both are the Tf(2)T and GrT, meaning that even if they do
not win every time, they achieve pretty high payoffs. On the
long run, on the basis of these numbers, the conclusion is that
these the strategies would emerge since yielding the maximum
possible payoff does not imply achieving high overall results.

More insights about this part, including the complete
collection of the generated pictures, can be found in the
repository, in the supplementary material and in the Appendix,
where collected statistics are presented.

V. MULTIPLE PLAYERS IPD - ROUND-ROBIN SCHEME

The IPD with round-robin (RR) scheme, used to match-up
the opponents, consists in a number of players, with multiple
strategies, not necessarily different, with each player playing
once against each other for a fixed NUM_ITER times. This
value is set by default to 50 in simulations but can be changed
with a parameter when launching the program.

Each player chooses its fixed strategy at the beginning of
the tournament and holds it throughout the course of the match
without knowing the strategies of the other players.

In short, it is a variation of the previous case, in which
multiple players, with possibly different strategies, play in a
RR way. The variation consists in the fact that a single player
will win the tournament if, at the end, he has the highest
cumulative payoff. Since there are C = N · (N −1)/2 possible
couples of players and I iterations of the game, at the end, the
total number of matches will be C · I . From the perspective
of each single player, the total number of match to attend is
simply I · (N − 1).



BONETTO et al.: A STUDY ON THE ITERATED PRISONER’S DILEMMA 5

Tournament statistics like points and counts of cooperation
and defection moves, along with the percentage of cooperation,
are shown in Table III.

As a validation proof, our results have been compared to the
ones obtained from the Axelrod Tournament Demo software,
[7] but this software does not implement all the strategies
considered in this work. For example, GrT is named Spiteful,
but the software cannot set Mainly Bad/Good strategies with
a given probability of cooperating for which a Random agent
is used as a substitute. Thus, slightly different outcomes were
foreseen due to this constraint; however, this notwithstanding,
the evolution of the tournament is quite similar between the two
simulations. Doing a special simulation with only deterministic
strategies leads to the same results, as it can be seen comparing
Table IV and Figure 28 in the Appendix.

Throughout our tests, we noticed how the results of the
tournament, and of the following case studies, depend on
the initial population and the balance between the amount of
“good” and “bad” players. Changing the population could lead
to different results: an insight that is rarely pointed out in the
literature.

Analyzing the 50-players game as in Figures [11,12,13,14],
where a random strategy is assigned to each player, the winning
strategy is GrT. Just behind it, there is TfT, followed by a tight
set of Tf2T, (Mainly) Bad, Bad and Indifferent strategies. Lastly,
(Mainly) Nice strategies achieve the lowest scores.

0 10 20 30 40 50
Iteration

0

1000

2000

3000

4000

5000

6000

Cu
m

. r
ew

ar
d

Evolution of the game

Nice
Nice
TitForTat
MainlyBad (k=81)
MainlyBad (k=70)
MainlyBad (k=85)
Nice
Indifferent
MainlyNice (k=8)
TitFor2Tat

Indifferent
GrimTrigger
Indifferent
Indifferent
MainlyNice (k=17)
Indifferent
Bad
Nice
Nice
MainlyBad (k=78)

TitFor2Tat
TitForTat
TitFor2Tat
Indifferent
Nice
TitForTat
Bad
GrimTrigger
MainlyNice (k=3)
Indifferent

TitForTat
TitFor2Tat
TitFor2Tat
MainlyBad (k=97)
Bad
GrimTrigger
GrimTrigger
TitForTat
TitFor2Tat
TitFor2Tat

TitForTat
TitForTat
TitForTat
MainlyBad (k=81)
Bad
MainlyBad (k=99)
Bad
GrimTrigger
MainlyNice (k=42)
MainlyBad (k=98)

Figure 11: 50 players, evolution of the game

Figure 12: 50 players, evolution – software results [7]

Gr
im
Tr
ig
ge
r

Ti
tF
or
Ta
t

Gr
im
Tr
ig
ge
r

Ti
tF
or
Ta
t

Ti
tF
or
Ta
t

Ti
tF
or
Ta
t

Ti
tF
or
Ta
t

Ti
tF
or
Ta
t

Ti
tF
or
Ta
t

Gr
im
Tr
ig
ge
r

Ti
tF
or
Ta
t

Ti
tF
or
2T
at

Ti
tF
or
2T
at

Ti
tF
or
2T
at

Ti
tF
or
2T
at

Ti
tF
or
2T
at

Ti
tF
or
2T
at

Gr
im
Tr
ig
ge
r

Ti
tF
or
2T
at

Ni
ce

Gr
im
Tr
ig
ge
r

Ni
ce

Ni
ce

Ni
ce

Ni
ce

Ni
ce

M
ai
nl
yN
ice
 (k
=3
)

In
di
ffe
re
nt

In
di
ffe
re
nt

In
di
ffe
re
nt

In
di
ffe
re
nt

In
di
ffe
re
nt

In
di
ffe
re
nt

M
ai
nl
yN
ice
 (k
=4
2)

In
di
ffe
re
nt

M
ai
nl
yB
ad
 (k
=7
0)

M
ai
nl
yN
ice
 (k
=8
)

M
ai
nl
yN
ice
 (k
=1
7)

M
ai
nl
yB
ad
 (k
=8
1)

M
ai
nl
yB
ad
 (k
=8
1)

M
ai
nl
yB
ad
 (k
=7
8)

M
ai
nl
yB
ad
 (k
=8
5)

M
ai
nl
yB
ad
 (k
=9
7)

M
ai
nl
yB
ad
 (k
=9
9)

M
ai
nl
yB
ad
 (k
=9
8)
Ba
d

Ba
d

Ba
d

Ba
d

Ba
d

Player

0

50

100

150

200

250

Po
in
ts

Mean and variance for each type vs the other players 
 One complete round

Figure 13: 50 players, boxplot of a single match

Gr
im

Tr
ig

ge
r

Gr
im

Tr
ig

ge
r

Gr
im

Tr
ig

ge
r

Gr
im

Tr
ig

ge
r

Gr
im

Tr
ig

ge
r

Ti
tF

or
Ta

t
Ti

tF
or

Ta
t

Ti
tF

or
Ta

t
Ti

tF
or

Ta
t

Ti
tF

or
Ta

t
Ti

tF
or

Ta
t

Ti
tF

or
Ta

t
Ti

tF
or

Ta
t

Ti
tF

or
2T

at
Ti

tF
or

2T
at

Ti
tF

or
2T

at
Ti

tF
or

2T
at

Ti
tF

or
2T

at
Ti

tF
or

2T
at

Ti
tF

or
2T

at
M

ai
nl

yB
ad

 (k
=7

8)
M

ai
nl

yB
ad

 (k
=8

1)
M

ai
nl

yB
ad

 (k
=8

5)
M

ai
nl

yB
ad

 (k
=9

9)
M

ai
nl

yB
ad

 (k
=8

1)
M

ai
nl

yB
ad

 (k
=9

7)
M

ai
nl

yB
ad

 (k
=7

0)
Ba

d
Ba

d
M

ai
nl

yB
ad

 (k
=9

8)
Ba

d
Ba

d
Ba

d
In

di
ffe

re
nt

In
di

ffe
re

nt
In

di
ffe

re
nt

In
di

ffe
re

nt
In

di
ffe

re
nt

In
di

ffe
re

nt
In

di
ffe

re
nt

M
ai

nl
yN

ice
 (k

=4
2)

Ni
ce

Ni
ce

Ni
ce

Ni
ce

Ni
ce

Ni
ce

M
ai

nl
yN

ice
 (k

=1
7)

M
ai

nl
yN

ice
 (k

=3
)

M
ai

nl
yN

ice
 (k

=8
)

Player

4500

5000

5500

6000

6500

Po
in

ts

points
Mean and variance for each type at the end of the tournament - 10 repetitions

Figure 14: 50 players, boxplot of the final points

In a 10-players game, as presented in Figures [15,16], the
best overall strategy is TfT. As pointed out previously, TfT is a
reactive strategy that leads in most of the cases to almost the
same reward as the opponent. After several tries, it is found
that a “good” setup to get this outcome includes more “nice”
strategies than “bad” ones in order to have a TfT winner or
to defect the “bad” players, there should be enough people
with strategies having limited power against “good” players (so
spiteful or reactive ones). This consideration is not common
in the literature but in our opinion it is important and worth
noticing, although it can be explained by the game’s insights.
This statement helps to interpret results and assign them the
right meaning.

0 10 20 30 40 50
Iteration

0

200

400

600

800

Cu
m
. r
ew

ar
d

Evolution of the game

TitForTat
TitForTat

TitForTat
TitForTat

Bad
Bad

Bad
Bad

Nice
Nice

Figure 15: 10 players, evolution of the game



6 HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018

Figure 16: 10 players, evolution – software results [7]

Historically TfT was considered the best strategy to win the
tournament since it is simple, and one of the best strategies for
maximizing the player’s score. This fact was demonstrated in
the extensive tests done by Axelrod, thoroughly described in
[8], [9] and taken up as a starting point in [6]: TfT, proposed by
Anatol Rapoport, was the winner over all strategies. However,
here it is proven that TfT wins only in specific tournaments
cases depending on the initial population. Moreover, spiteful
strategies like GrT seem to get the maximum in heterogeneous
and more mixed populations. In any case, both have an extreme
but effective behavior in our testbed. Possible advances can be
introduced by taking into account more than the last one or two
moves, allowing for more intricate and complex strategies [6].

In each tournament, some variations of the results can be seen
by repeating the simulation multiple times with the same initial
population and generating boxplots; since random strategies
have been introduced, the result of a one-shot complete game
may differ with respect to the average results. These are rare
cases that ought to be considered as outliers. Moreover, running
simulations with different strategies or with a different initial
population (i.e. 20 or 30 players, or by changing the seed
value), obtained results can be different, especially since the
balance between the number of (Mainly) Bad and (Mainly)
Nice guys changes from the previously analyzed scenarios. The
results of the tournaments are not predictable without knowing
the initial population but this is an information available only
to external observers and not to the actual players.

The results are backed also by achieve and yield metrics
that do not change much with respect to “A vs B” games. It
can be easily noticed how it is the combination of the two that
“matters”, rather than either of them alone, although obviously
players which have an higher achieve value are usually in the
“winner” part of the chart.

VI. REPEATED MULTIPLE PLAYERS IPD

The previously defined MPIPD tournament is now iterated
many times and the population changes based on the results
obtained in the previous round: the scheme is denoted as a
Repeated MPIPD (rMPIPD).

Two main separated scenarios have been developed to
study the behavior, the evolution of the populations and
the convergence speed by simulations: static and increasing
populations (with three separated sub-cases). A population is

said to be converged in our simulations if more than 3/4 of it
have the same strategy type at the end of a complete round.
The basic rules are the same as pointed out in the previous
sections (common knowledge, etc.).

A. Static Population

In this case, the number of players is fixed. Each player
implements a strategy choosing it with equal probability from
the strategies set. At the end of each round, the population
is sorted with respect to the cumulative payoff and a fixed
percentage x (30% is the default in our simulations) of it,
starting from the beginning of the list, is “doubled”, so that
for each player in this subset, another player with the same
strategy is added to the population. Likewise, the players in
the last x% of the chart are then removed from the game,
regardless of their strategies. In this way, the total number of
players is ensured to be static and then the convergence of the
population through consecutive rounds can be studied. After
this step, the scores are zeroed and the tournament can restart.

If convergence is not reached after a maximum number of
repetitions, execution of the program is stopped. This method
is similar to that used by Axelrod in his tests [6, §2.6] [9].

Figures [17,18,19] show the evolution of a population of 50
players over some iterations. Details on the evolution of the
population, grouped by strategy type, are presented in Table V.

0 1 2 3 4
Time

0

5

10

15

20

25

30

Nu
m
be
r o

f s
tra

te
gi
es

Strategies evolution

GrimTrigger
TitFor2Tat
TitForTat
Nice

MainlyNice (k=3)
MainlyNice (k=8)
MainlyNice (k=17)
MainlyNice (k=42)

Indifferent
MainlyBad (k=70)
MainlyBad (k=78)

MainlyBad (k=81)
MainlyBad (k=85)
MainlyBad (k=97)

MainlyBad (k=98)
MainlyBad (k=99)
Bad

Figure 17: Evolution of a constant population of 50 players

0 10 20 30 40 50
Match number

0

1000

2000

3000

4000

5000

6000

Po
in

ts

Multi pl. game: 50

GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat

TitForTat
TitForTat
TitForTat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat

MainlyBad (k=97)
MainlyBad (k=78)
MainlyBad (k=85)
MainlyBad (k=81)
Bad
MainlyBad (k=70)
Bad
MainlyBad (k=81)
Bad
MainlyBad (k=99)

Indifferent
Bad
Bad
MainlyBad (k=98)
Indifferent
Indifferent
Indifferent
Indifferent
Indifferent
Indifferent

MainlyNice (k=42)
Nice
Nice
Nice
Nice
Nice
Nice
MainlyNice (k=17)
MainlyNice (k=8)
MainlyNice (k=3)

Figure 18: First iteration scores (it = 0)



BONETTO et al.: A STUDY ON THE ITERATED PRISONER’S DILEMMA 7

0 10 20 30 40 50
Match number

0

1000

2000

3000

4000

5000

6000

7000
Po

in
ts

Multi pl. game: 50

GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger

GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger

GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
TitForTat
GrimTrigger

TitForTat
TitForTat
TitForTat
GrimTrigger
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat

TitForTat
TitForTat
TitForTat
TitForTat
TitFor2Tat
TitFor2Tat
MainlyNice (k=42)
Bad
MainlyBad (k=98)
MainlyBad (k=99)

Figure 19: Last iteration scores (it = 4)

It can be easily observed how the GrT and TfT strategies
very quickly outpace the others: in just two iterations, they
represent almost half of the population, with a predominance
of TfT players. At the fifth iteration, we can see that GrT
takes the lead but, as previously stated, results depend on the
initial population: for example, by fixing the seed to 24 as in
Figure 20 and Table VI, it can be pointed out how TfT players
dominate, while using 1209 as seed (Figure 21 and Table VII)
leads to a final population formed by mostly Bad players.

0 1 2 3 4 5 6 7
Time

0

5

10

15

20

25

30

35

Nu
m
be
r o
f s
tra
te
gi
es

Strategies evolution

GrimTrigger
TitFor2Tat
TitForTat
Nice

MainlyNice (k=4)
MainlyNice (k=5)
MainlyNice (k=28)
MainlyNice (k=34)

Indifferent
MainlyBad (k=51)
MainlyBad (k=52)
MainlyBad (k=56)

MainlyBad (k=58)
MainlyBad (k=61)
MainlyBad (k=70)
MainlyBad (k=92)

MainlyBad (k=93)
MainlyBad (k=96)
MainlyBad (k=97)
Bad

Figure 20: Evolution of a 50-players pop., seed = 24

0 1 2 3 4
Time

0

5

10

15

20

25

30

Nu
m
be
r o
f s
tra
te
gi
es

Strategies evolution

GrimTrigger
TitFor2Tat
TitForTat
Nice

MainlyNice (k=4)
MainlyNice (k=12)
MainlyNice (k=24)
MainlyNice (k=31)

MainlyNice (k=34)
Indifferent
MainlyBad (k=58)

MainlyBad (k=63)
MainlyBad (k=74)
MainlyBad (k=76)

MainlyBad (k=82)
MainlyBad (k=99)
Bad

Figure 21: Evolution of a 50-players pop., seed = 1209

These results add some new insights to the previous results
obtained by the simulation of the iterated Prisoner’s Dilemma:
TfT overwhelms its brother Tf2T. Taking scores into account,
we can notice how GrT and TfT are pretty similar since they
do not trigger each other.

B. Increasing Population

In this case, the number of players (population) is increased
at each iteration. Three different ways of adding population
between rounds have been implemented; after each round, a
player has a certain probability based on his ranking to have a
child of the same type:

1) The probability is p(i) = 1 − i / num_players where
i is the position reached by the player. The winner of
the round is indeed doubled, because p(0) = 1, while the
looser is not, as p(last) = 0. For each player, a random
number d is drawn, according to a uniform probability
distribution, and compared with p(i). If p(i) is greater
than d the player is effectively doubled, otherwise not.

2) The ordered population is split into three sets of equal
size A,B,C. For each player in the population, a random
number d is drawn and its strategy is doubled if:
• d > 0.2 if the player belongs to A
• d > 0.5 if the player belongs to B
• d > 0.8 if the player belongs to C

This is an alternative way to promote best strategies, due
to the higher probability of being doubled, and obstruct
less performing players, whose total number does not
increase significantly.

3) A player’s score is defined as its obtained points divided
by the maximum obtained score in the whole population.
The player’s strategy is doubled if a drawn random number
is greater than its score.

In our software, the first of the three proposed methods
is used by default. Other methods can be used by setting
programs’ parameters.

Figures [22,23,24] show the evolution of a population of 50
players over four iterations using alternative 1. In this case,
convergence is not reached at the fifth iteration, since the
population is increasing, but the simulation still shows the
same behavior. The GrT and TfT strategies are getting stronger
and stronger. In conclusion, in the future, i.e. evaluating the
problem with more iterations, the population will increase with
similar behavior and converge to these strategies as in the
constant population scenario.

0 1 2 3 4 5
Time

0

20

40

60

80

100

120

Nu
m
be
r o
f s
tra
te
gi
es

Strategies evolution

GrimTrigger
TitFor2Tat
TitForTat
Nice

MainlyNice (k=3)
MainlyNice (k=8)
MainlyNice (k=17)
MainlyNice (k=42)

Indifferent
MainlyBad (k=70)
MainlyBad (k=78)

MainlyBad (k=81)
MainlyBad (k=85)
MainlyBad (k=97)

MainlyBad (k=98)
MainlyBad (k=99)
Bad

Figure 22: Evolution of an increasing pop. from 50 players

The other alternatives give similar results that do not
change our considerations. Full details on the evolution of the
population for all alternatives can be found in the Appendix
(Tables [VIII,IX,X] and Figures [29,30]).



8 HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018

0 10 20 30 40 50
Match number

0

1000

2000

3000

4000

5000

6000

Po
in

ts

Multi pl. game: 50

GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat

TitForTat
TitForTat
TitForTat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat

MainlyBad (k=97)
MainlyBad (k=78)
MainlyBad (k=85)
MainlyBad (k=81)
Bad
MainlyBad (k=70)
Bad
MainlyBad (k=81)
Bad
MainlyBad (k=99)

Indifferent
Bad
Bad
MainlyBad (k=98)
Indifferent
Indifferent
Indifferent
Indifferent
Indifferent
Indifferent

MainlyNice (k=42)
Nice
Nice
Nice
Nice
Nice
Nice
MainlyNice (k=17)
MainlyNice (k=8)
MainlyNice (k=3)

Figure 23: First iteration scores (it = 0)

0 50 100 150 200 250
Match number

0

5000

10000

15000

20000

25000

30000

35000

Po
in

ts

Multi pl. game: 50

GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger

GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
GrimTrigger
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat

TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitForTat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat

TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
TitFor2Tat
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
Nice
MainlyNice (k=3)
MainlyNice (k=8)

MainlyNice (k=17)
MainlyNice (k=42)
Indifferent
MainlyNice (k=8)
MainlyNice (k=8)
MainlyNice (k=42)
Indifferent
MainlyNice (k=42)
Indifferent
Indifferent
MainlyNice (k=42)
MainlyNice (k=8)
MainlyNice (k=42)
MainlyNice (k=42)
Indifferent
Indifferent
Indifferent
Indifferent
Indifferent
Indifferent
Indifferent
MainlyBad (k=70)
MainlyBad (k=70)
MainlyBad (k=70)
MainlyBad (k=70)
MainlyBad (k=78)
MainlyBad (k=78)
MainlyBad (k=78)
MainlyBad (k=78)
MainlyBad (k=81)
MainlyBad (k=81)
MainlyBad (k=81)
MainlyBad (k=81)
MainlyBad (k=81)
MainlyBad (k=81)
MainlyBad (k=85)
MainlyBad (k=97)
MainlyBad (k=98)
MainlyBad (k=99)
Bad
MainlyBad (k=99)
Bad
Bad
Bad
Bad
Bad
Bad
Bad
Bad
Bad

Figure 24: Last iteration scores (it = 4)

The only partial exception to this trend is alternative 3
because the score obtained by each player is not equally
distributed as in the other two cases. This benefits the strategies
that have achieved the best overall score and disadvantages all
the other strategies.

It is interesting to note how Wu and Axelrod [10] exploit
the presented behavior of TfT to react to noise in the game:
by slightly altering the strategy in both directions, adding
generosity (some percentage of opponent’s defections go
unpunished) or contrition (avoid responding to a defect move
when a player’s previous defection was unintended), the “error”
can be quickly recovered and cooperation can be successfully
restored. Note, however, that in this work these two variations
of the TfT strategy are not implemented.

Simulation times grow at each iteration since for each player,
as we have seen in Section V, I · (N ′ − 1) rounds are added
and I · (N ′ − 1) ·NUM_ITER iterations have to be played
and the results sorted: this easily explodes. Taking into account
the dependence with respect to the initial population, what
is suggested from the previous constant population case is
preserved also when the number constraint is relaxed.

VII. RMPIPD WITH CHANGING STRATEGIES

A step further is made by allowing players to change their
strategies in the rIPDMP setup, from which the main structure is
unaltered. Each player has a gene c, representing his attitude to
cooperate. This value is initially assigned a value of c = k/100,
where k is the probability of cooperating for random, Bad and
Nice strategies. For GrT, TfT and Tf2T c is set to 0.5 since
these strategies do not have an intrinsic specific attitude for
cooperating.

A single round of the game goes as follow: a rIPDMP’s
round is played, then new players are generated following the
first alternative presented in the previous Subsection VI-B, and
for each one of the “old” players a new c is generated and
their strategies change accordingly. This will be repeated until
convergence or a maximum number of iterations is reached.

Two alternatives are proposed to change c after each round.

1) For each player, a new random cN is generated
2) The change of strategy is again based on players’ ranking

and probability. Bad players (those with k > 50) have
their c updated as cN = (c+(i/num_players)2)/2, that
is, players high in the chart will go to a less cooperative
behavior and vice-versa. Good players are updated ac-
cording to cN = (c+ ((1− i)/num_players)2)/2, that
is, opposite from before, players high in the chart will
have a more cooperative behavior and vice-versa.

At this point, if the absolute value of the difference between
the old c and the new cN is greater than a threshold (set to
0.1) the strategy will change. The new strategy is picked from
a set made of six different random strategies plus GrT, TfT,
Tf2T. Note that GrT is not available if the player’s strategy is
going to change towards the good side: in our vision, GrT is
a revengeful strategy, and the fact that others call it spiteful
also support that. We cannot propose this strategy if someone
wants to be a “good” player. On the contrary, a player can
move to a less cooperative behavior and eventually become of
a GrT type. TfT, Tf2T are treated as being in the middle of the
range, like Indifferent, since they are reactive strategies. The



BONETTO et al.: A STUDY ON THE ITERATED PRISONER’S DILEMMA 9

random strategy generation is bounded based on the strategy’s
id (k for probability strategies) and cN :3

• if cN ≥ 0.5 the strategies stay on the “good” side, between
(1− cN )× 100 and min(id, 50).
• if cN < 0.5 the strategies stay on the “bad” side, between
max(id, 50) and (1− cN )× 100.

The evolution of a population initially made of 50 players
is presented in Figures [25,26,27] and details can be found
in Table XI: the metrics “To more (less) cooperative” are
purely indicative of the inclination of players that changed
their strategy.

0 1 2 3 4 5 6 7
Time

0

20

40

60

80

100

120

Nu
m
be
r o
f s
tra
te
gi
es

Strategies evolution

GrimTrigger
TitFor2Tat
TitForTat
Nice
MainlyNice (k=3)
MainlyNice (k=8)
MainlyNice (k=17)
MainlyNice (k=42)
Indifferent
MainlyBad (k=70)
MainlyBad (k=78)
MainlyBad (k=81)
MainlyBad (k=85)
MainlyBad (k=97)
MainlyBad (k=98)
MainlyBad (k=99)
Bad
MainlyNice (k=11)
MainlyNice (k=20)
MainlyNice (k=24)

MainlyNice (k=29)
MainlyNice (k=38)
MainlyNice (k=40)
MainlyNice (k=43)
MainlyBad (k=51)
MainlyBad (k=56)
MainlyBad (k=62)
MainlyBad (k=63)
MainlyBad (k=68)
MainlyBad (k=69)
MainlyBad (k=76)
MainlyBad (k=87)
MainlyNice (k=25)
MainlyNice (k=27)
MainlyNice (k=28)
MainlyNice (k=30)
MainlyNice (k=32)
MainlyNice (k=35)
MainlyNice (k=36)

MainlyBad (k=52)
MainlyBad (k=55)
MainlyBad (k=59)
MainlyBad (k=60)
MainlyBad (k=61)
MainlyBad (k=71)
MainlyBad (k=72)
MainlyBad (k=84)
MainlyBad (k=86)
MainlyNice (k=7)
MainlyNice (k=23)
MainlyNice (k=34)
MainlyNice (k=37)
MainlyNice (k=39)
MainlyNice (k=46)
MainlyNice (k=47)
MainlyNice (k=49)
MainlyBad (k=54)
MainlyBad (k=66)

MainlyBad (k=67)
MainlyBad (k=73)
MainlyBad (k=74)
MainlyBad (k=77)
MainlyBad (k=80)
MainlyBad (k=90)
MainlyBad (k=94)
MainlyBad (k=95)
MainlyNice (k=15)
MainlyNice (k=16)
MainlyNice (k=22)
MainlyNice (k=26)
MainlyNice (k=31)
MainlyNice (k=33)
MainlyNice (k=41)
MainlyNice (k=44)
MainlyNice (k=45)
MainlyNice (k=48)
MainlyBad (k=57)

MainlyBad (k=64)
MainlyBad (k=65)
MainlyBad (k=82)
MainlyBad (k=88)
MainlyNice (k=5)
MainlyNice (k=13)
MainlyNice (k=18)
MainlyBad (k=53)
MainlyBad (k=58)
MainlyBad (k=75)
MainlyBad (k=89)
MainlyBad (k=91)
MainlyNice (k=10)
MainlyNice (k=12)
MainlyNice (k=19)
MainlyBad (k=79)
MainlyBad (k=83)
MainlyBad (k=92)
MainlyBad (k=93)

Figure 25: Evolution of an increasing pop., from 50 players,
with changing strategies

0 500 1000 1500 2000 2500
Match number

0

50000

100000

150000

200000

250000

300000

350000

Po
in

ts

Multi pl. game: 50

MainlyNice (k=42)
MainlyBad (k=65)
TitForTat
MainlyNice (k=39)
MainlyNice (k=19)
GrimTrigger
MainlyNice (k=17)
MainlyNice (k=32)
MainlyNice (k=44)
MainlyNice (k=39)

MainlyNice (k=33)
TitFor2Tat
MainlyNice (k=47)
MainlyBad (k=52)
MainlyBad (k=59)
GrimTrigger
Indifferent
MainlyNice (k=28)
MainlyNice (k=35)
MainlyNice (k=47)

MainlyNice (k=29)
MainlyBad (k=91)
MainlyNice (k=45)
GrimTrigger
TitFor2Tat
MainlyNice (k=23)
TitForTat
MainlyBad (k=52)
MainlyNice (k=48)
MainlyNice (k=29)

MainlyBad (k=61)
MainlyNice (k=37)
TitForTat
TitFor2Tat
Indifferent
MainlyNice (k=43)
GrimTrigger
MainlyNice (k=31)
MainlyBad (k=56)
MainlyBad (k=55)

MainlyBad (k=75)
MainlyBad (k=53)
MainlyBad (k=59)
TitFor2Tat
TitFor2Tat
MainlyNice (k=21)
MainlyBad (k=85)
TitFor2Tat
GrimTrigger
MainlyNice (k=48)

Figure 26: First iteration scores (it = 0)

The second alternative is shown on Table XII and Figure 31.
In both cases it is easy to see that the same strategies of the

previously investigated scenarios take the lead, namely GrT,
Tf(2)T and Bad players. In our simulations we have found that
either with a randomly generated or a deterministic cooperation

3As a consequence, 4 different cases have to be handled, depending on id
or 50 being considered inside the min and max functions in the bounds.

0 500 1000 1500 2000 2500
Match number

0

50000

100000

150000

200000

250000

300000

350000

Po
in

ts

Multi pl. game: 50

MainlyBad (k=91)
MainlyNice (k=35)
MainlyNice (k=42)
MainlyBad (k=85)
MainlyBad (k=83)
Indifferent
MainlyNice (k=43)
TitForTat
TitForTat
MainlyNice (k=44)
GrimTrigger
TitFor2Tat
MainlyNice (k=28)
MainlyNice (k=37)
MainlyBad (k=61)
MainlyBad (k=65)
MainlyNice (k=47)
TitForTat
GrimTrigger
MainlyNice (k=19)
MainlyNice (k=39)
TitForTat
MainlyNice (k=17)
TitFor2Tat
MainlyBad (k=53)
MainlyNice (k=48)
MainlyNice (k=33)
MainlyNice (k=47)
MainlyNice (k=45)
TitFor2Tat
TitFor2Tat
GrimTrigger
MainlyNice (k=23)
MainlyBad (k=52)
TitFor2Tat
GrimTrigger
MainlyBad (k=52)
MainlyNice (k=32)
MainlyNice (k=48)
MainlyBad (k=55)
MainlyBad (k=59)
Indifferent
MainlyNice (k=39)
MainlyNice (k=31)
MainlyBad (k=56)
Indifferent
MainlyBad (k=59)
GrimTrigger
MainlyNice (k=33)
TitFor2Tat
MainlyNice (k=35)
TitFor2Tat

MainlyNice (k=35)
MainlyNice (k=30)
TitFor2Tat
MainlyNice (k=37)
MainlyNice (k=13)
MainlyNice (k=29)
MainlyBad (k=75)
TitForTat
TitForTat
TitFor2Tat
TitFor2Tat
MainlyNice (k=21)
TitForTat
TitForTat
MainlyBad (k=71)
MainlyBad (k=58)
MainlyNice (k=34)
TitFor2Tat
MainlyNice (k=14)
MainlyNice (k=41)
TitForTat
MainlyBad (k=97)
MainlyBad (k=52)
MainlyNice (k=29)
MainlyNice (k=18)
MainlyNice (k=26)
MainlyBad (k=59)
Indifferent
TitFor2Tat
MainlyBad (k=51)
MainlyNice (k=27)
GrimTrigger
MainlyNice (k=38)
MainlyBad (k=52)
MainlyNice (k=34)
TitForTat
MainlyBad (k=59)
MainlyNice (k=30)
TitFor2Tat
MainlyNice (k=49)
MainlyNice (k=29)
MainlyBad (k=74)
MainlyBad (k=65)
MainlyBad (k=67)
MainlyBad (k=90)
GrimTrigger
TitFor2Tat
TitFor2Tat
Indifferent
MainlyBad (k=71)
MainlyNice (k=22)
MainlyNice (k=11)

TitFor2Tat
TitFor2Tat
TitForTat
MainlyBad (k=60)
MainlyNice (k=36)
MainlyNice (k=45)
TitForTat
MainlyNice (k=9)
MainlyNice (k=24)
MainlyNice (k=43)
TitFor2Tat
MainlyNice (k=34)
MainlyBad (k=58)
MainlyNice (k=18)
MainlyNice (k=31)
MainlyNice (k=33)
MainlyNice (k=44)
TitFor2Tat
MainlyBad (k=52)
TitForTat
MainlyBad (k=77)
MainlyBad (k=53)
MainlyNice (k=37)
MainlyNice (k=30)
MainlyNice (k=35)
Indifferent
MainlyNice (k=32)
MainlyBad (k=55)
MainlyBad (k=56)
TitFor2Tat
TitForTat
TitFor2Tat
MainlyNice (k=30)
MainlyBad (k=55)
MainlyNice (k=44)
MainlyBad (k=60)
GrimTrigger
MainlyBad (k=65)
MainlyNice (k=29)
TitFor2Tat
MainlyBad (k=70)
MainlyNice (k=46)
MainlyBad (k=66)
Indifferent
MainlyBad (k=52)
MainlyBad (k=67)
MainlyBad (k=66)
MainlyBad (k=72)
GrimTrigger
MainlyNice (k=35)
TitForTat

MainlyNice (k=38)
TitForTat
MainlyNice (k=41)
TitFor2Tat
Indifferent
MainlyNice (k=8)
MainlyNice (k=9)
TitFor2Tat
GrimTrigger
MainlyNice (k=18)
TitFor2Tat
MainlyNice (k=37)
TitFor2Tat
MainlyBad (k=79)
MainlyNice (k=22)
MainlyBad (k=56)
GrimTrigger
Indifferent
TitForTat
MainlyNice (k=47)
MainlyBad (k=56)
MainlyNice (k=31)
GrimTrigger
MainlyNice (k=49)
MainlyNice (k=22)
MainlyNice (k=31)
MainlyNice (k=47)
MainlyBad (k=74)
TitFor2Tat
MainlyNice (k=35)
MainlyBad (k=52)
MainlyBad (k=68)
TitForTat
GrimTrigger
MainlyNice (k=42)
MainlyBad (k=75)
GrimTrigger
TitForTat
MainlyBad (k=72)
MainlyBad (k=65)
MainlyNice (k=36)
MainlyBad (k=86)
TitForTat
MainlyBad (k=53)
MainlyNice (k=16)
MainlyBad (k=62)
TitForTat
TitForTat
MainlyBad (k=51)
MainlyBad (k=83)
MainlyNice (k=45)

MainlyBad (k=56)
MainlyBad (k=53)
MainlyNice (k=22)
TitForTat
MainlyNice (k=32)
MainlyNice (k=42)
MainlyBad (k=77)
MainlyBad (k=77)
MainlyNice (k=30)
MainlyNice (k=48)
TitFor2Tat
MainlyNice (k=37)
MainlyBad (k=56)
MainlyNice (k=41)
MainlyBad (k=58)
MainlyNice (k=31)
MainlyBad (k=83)
MainlyNice (k=33)
MainlyBad (k=53)
MainlyBad (k=89)
MainlyNice (k=45)
MainlyNice (k=31)
MainlyNice (k=37)
MainlyBad (k=73)
MainlyNice (k=40)
TitForTat
MainlyBad (k=62)
MainlyBad (k=59)
TitFor2Tat
GrimTrigger
MainlyBad (k=72)
TitFor2Tat
MainlyBad (k=73)
MainlyBad (k=69)
MainlyBad (k=85)
MainlyBad (k=61)
MainlyNice (k=43)
MainlyBad (k=79)
MainlyNice (k=32)
MainlyBad (k=59)
MainlyBad (k=82)
MainlyNice (k=47)
MainlyNice (k=47)
TitFor2Tat
TitFor2Tat
TitForTat
MainlyNice (k=40)
TitForTat
Nice
Nice
MainlyNice (k=44)

Figure 27: Middle iteration scores (it = 4)

factor the evolution of the population still converges toward the
strategies we previously identified as winningly: while from
Figure 25 we can note how TfT and Tf2T jointly leave behind
all other strategies, using alternative 2 as in Figure 31 results
in Bad players to be the majority of the population after a few
rounds. Finally, we can note how the sets of “good” and “bad”
players have more or less the same cardinality, that is, there is
no substantial differences betweeen the two populations. Given
the results obtained in the previous simulations we can expect
no substantial changes in the future of these simulations and
different results with different initial populations. Much more
articulated simulations may be done, for example by excluding
some strategies or the generation of the population, but we
wanted to keep a common framework within all the steps of
this work.

VIII. MACHINE LEARNING APPROACHES

Since the beginning of research on this subject, studies have
been developed to find some pattern that can be exploited by
learning algorithms. By the formulation of the IPD game, if
such a pattern exists, it has to be learned using unsupervised
techniques, since the final outcome of the players depends on
their actions.



10 HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018

Players should learn to cooperate — equivalently, to enhance
their altruism — and here the aim is to do so by adaptively
learning a strategy. A hindrance is that, in the PD, the Nash
equilibrium solution (as stated before, to defect) is not a
desirable learning target [11].

Reinforcement learning (RL) is an unsupervised learning
technique whereby the system must select an output (in case
of PD, an action: cooperate or defect) for which it receives
a scalar evaluation. RL requires to find the best output for
any given input, and is based on the idea that the tendency to
produce an action should be strengthened if the action led to
favorable results, and weakened otherwise [12].

Sandholm and Crites [12] employed recurrent neural net-
works (RNN) and the Q-learning algorithm, a particular RL
procedure that works by estimating the value of state-action
pairs, to train agents to play against the TfT strategy and
against an unknown opponent. While the first task was easily
learned, the second one proved to be more difficult due to non-
stationary behavior and lack of a priori knowledge of a policy
to encourage cooperation. More recently, Wang [13] extended
this study with newly developed structures for the RNN part, to
test both finite and infinite iterations setups. However, his tests
led to pretty much the same results Sandholm had previously
obtained. Finally, evolutionary and particle swarm algorithms
are used by Harper et al. in a very extensive study [14] to train
strategies to perform well against over 170 distinct opponents
even in noisy tournaments.

What is noted from the literature is that it is an easy task
for a player to learn to compete against a deterministic player,
while it is indeed difficult to generalize to an opponent with
unspecified behavior.

This is a very specific problem that, given the restrictions
of the game, cannot be fully solved by machine learning
procedures. As a matter of fact, the rules of the game restrict it
in a very simple but powerful area where this kind of methods
gain their strengths: information. In particular, we cannot allow
the algorithm to know the opponent moves in advance, or
their type, or how much the game will go on or any other
information that would be viable and helpful to solve the
game. Furthermore, the intrinsic “incoherence” between rational
behavior and optimal outcome (the Nash equilibrium vs Pareto
efficiency choices) makes the task extremely difficult to be
fully examined by machine learning approaches.

IX. CONCLUSIONS AND FUTURE WORK

We presented our implementation of the Prisoner’s Dilemma
and we analyzed the outcomes of several different case studies.
We pointed out that there is no “best” strategy for the game:
each individual strategy will work better when matched against
a “worse” strategy. When paired with a mindless strategy like
probability strategies, TfT sinks to its opponent’s level. This is
why TfT is not the “best” strategy. In order to win, a player
should figure out its opponent’s strategy and then pick a strategy
that is best suited for the situation. We also showed advances
in the literature that try to address the iterative version of the
game with machine learning approaches, noting that it is no
trivial task. An important insight is also the tight dependance

with respect to the initial population and seed: this factor could
vary the results in an unpredictable and unexpected way. It is
not trivial to address which player would be the winner given
an initial population. Finally, the introduction of the possibility
to change the strategies within the tournament does not vary
the final results, but only the way the population gets there.

This work can be easily extended in many ways: a lot of new
and more complex strategies were created since the original
tournaments made by Axelrod and these may be incorporated in
the analysis, alongside the already available ones. The Axelrod
library, [15], [16] written in Python and also used by [14],
contains more than 270 standard, deterministic and learning-
based strategies, and is now the reference framework to study
the prisoner’s dilemma. Furthermore, research may be directed
to find and implement different features or network structures
that achieve better results with automated learning. It would
be also interesting to extend the memory of the players to the
whole history of the game, allowing them to make predictions
and belief on the type of the opponents.

REFERENCES

[1] A. Rapoport, “Optimal policies for the Prisoner’s Dilemma,” Psychologi-
cal Review, vol. 74, pp. 136–148, 1967.

[2] D. B. Fogel, “Evolving Behaviors in the Iterated Prisoner’s Dilemma,”
Evolutionary Computation, vol. 1, no. 1, pp. 77–97, 1993. [Online].
Available: https://doi.org/10.1162/evco.1993.1.1.77

[3] A. M. Colman, Game theory and experimental games: The study of
strategic interaction. Pergamon Press, 1982.

[4] X. Yao and P. J. Darwen, “An experimental study of N-person iterated
prisoner’s dilemma games,” Informatica, vol. 18, no. 4, pp. 435–450,
1994.

[5] J. Lorberbaum, “No Strategy is Evolutionarily Stable in the
Repeated Prisoner’s Dilemma,” Journal of Theoretical Biology,
vol. 168, no. 2, pp. 117 – 130, 1994. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022519384710927

[6] P. Mathieu and J.-P. Delahaye, “New Winning Strategies for the
Iterated Prisoner’s Dilemma,” Journal of Artificial Societies and
Social Simulation, vol. 20, no. 4, p. 12, 2017. [Online]. Available:
http://jasss.soc.surrey.ac.uk/20/4/12.html

[7] C. Cook. Axelrod Tournament Demo software. [Online]. Available:
http://www2.econ.iastate.edu/tesfatsi/demos/axelrod/axelrodt.htm

[8] R. Axelrod and W. D. Hamilton, “The evolution of cooperation,” Science,
vol. 211, no. 4489, pp. 1390–1396, 1981.

[9] R. Axelrod and R. M. Axelrod, The Evolution of Cooperation. Basic
Books, 1984.

[10] J. Wu and R. Axelrod, “How to Cope with Noise in the Iterated Prisoner’s
Dilemma,” Journal of Conflict Resolution, vol. 39, no. 1, pp. 183–189,
1995. [Online]. Available: https://doi.org/10.1177/0022002795039001008

[11] W. Wang, J. Hao, Y. Wang, and M. Taylor, “Towards Cooperation
in Sequential Prisoner’s Dilemmas: a Deep Multiagent Reinforcement
Learning Approach,” CoRR, vol. abs/1803.00162, Mar. 2018. [Online].
Available: http://arxiv.org/abs/1803.00162

[12] T. W. Sandholm and R. H. Crites, “Multiagent reinforcement learning in
the Iterated Prisoner’s Dilemma,” Biosystems, vol. 37, no. 1, pp. 147 –
166, 1996. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0303264795015515

[13] K. Wang, “Iterated Prisoners Dilemma with
Reinforcement Learning,” Mar. 2017. [Online]. Available:
http://web.stanford.edu/class/psych209/Readings/2017ProjectExamples/
wangkeven_17581_1628229_psych209_paper.pdf

[14] M. Harper, V. Knight, M. Jones, G. Koutsovoulos, N. E. Glynatsi et al.,
“Reinforcement learning produces dominant strategies for the Iterated
Prisoner’s Dilemma,” PLOS ONE, vol. 12, no. 12, pp. 1–33, Dec. 2017.
[Online]. Available: https://doi.org/10.1371/journal.pone.0188046

[15] V. A. Knight, O. Campbell, M. Harper, K. M. Langner, J. R. Campbell
et al., “An Open Framework for the Reproducible Study of the Iterated
Prisoner’s Dilemma,” 2016.

[16] The Axelrod project developers. Axelrod-Python. [Online]. Available:
https://github.com/Axelrod-Python/Axelrod

https://doi.org/10.1162/evco.1993.1.1.77
http://www.sciencedirect.com/science/article/pii/S0022519384710927
http://jasss.soc.surrey.ac.uk/20/4/12.html
http://www2.econ.iastate.edu/tesfatsi/demos/axelrod/axelrodt.htm
https://doi.org/10.1177/0022002795039001008
http://arxiv.org/abs/1803.00162
http://www.sciencedirect.com/science/article/pii/0303264795015515
http://www.sciencedirect.com/science/article/pii/0303264795015515
http://web.stanford.edu/class/psych209/Readings/2017ProjectExamples/wangkeven_17581_1628229_psych209_paper.pdf
http://web.stanford.edu/class/psych209/Readings/2017ProjectExamples/wangkeven_17581_1628229_psych209_paper.pdf
https://doi.org/10.1371/journal.pone.0188046
https://github.com/Axelrod-Python/Axelrod


BONETTO et al.: A STUDY ON THE ITERATED PRISONER’S DILEMMA 11

APPENDIX
ADDITIONAL FIGURES AND TABLES OF TOURNAMENT RESULTS

Table I: 2-players IPD, statistics

Strategies Scores Player 1 Scores Player 2
Player 1 Player 2 avg std yield achieve avg std yield achieve

Bad Bad 50.0 0.00 100.00 20.00 50.0 0.00 100.00 20.00
Bad TitFor2Tat 58.0 0.00 100.00 23.20 48.0 0.00 96.00 19.51
Bad GrimTrigger 54.0 0.00 100.00 21.60 49.0 0.00 98.00 19.76
Bad Indifferent 146.0 11.03 100.00 58.40 26.0 2.76 52.00 12.84
Bad MainlyNice (k=27) 205.6 11.66 100.00 82.24 11.1 2.91 22.20 6.39
Bad TitForTat 54.0 0.00 100.00 21.60 49.0 0.00 98.00 19.76
Bad MainlyBad (k=72) 102.0 15.39 100.00 40.80 37.0 3.85 74.00 16.48
Bad Nice 250.0 0.00 100.00 100.00 0.0 0.00 0.00 0.00
TitFor2Tat TitFor2Tat 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
TitFor2Tat GrimTrigger 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
TitFor2Tat Indifferent 91.4 4.52 62.50 52.76 160.4 11.19 79.57 79.78
TitFor2Tat MainlyNice (k=27) 110.3 8.54 59.34 68.97 164.3 5.80 71.78 90.45
TitFor2Tat TitForTat 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
TitFor2Tat MainlyBad (k=72) 73.1 4.18 71.23 36.40 127.1 14.69 87.02 57.08
TitFor2Tat Nice 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
GrimTrigger GrimTrigger 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
GrimTrigger Indifferent 149.2 11.50 98.43 60.51 30.7 4.12 53.99 15.39
GrimTrigger MainlyNice (k=27) 194.8 11.15 97.57 79.75 22.3 8.22 35.21 12.68
GrimTrigger TitForTat 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
GrimTrigger MainlyBad (k=72) 101.4 12.19 98.23 41.02 41.9 3.39 75.36 18.73
GrimTrigger Nice 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
Indifferent Indifferent 112.3 10.21 74.56 56.17 112.3 10.21 74.56 56.17
Indifferent MainlyNice (k=27) 150.3 16.27 77.36 75.42 97.3 12.86 64.02 54.59
Indifferent TitForTat 117.5 7.27 73.92 60.08 115.5 7.99 73.39 59.30
Indifferent MainlyBad (k=72) 77.5 14.15 70.26 38.68 126.5 11.59 84.81 57.50
Indifferent Nice 200.8 5.00 80.32 100.00 73.8 7.49 49.62 49.20
MainlyNice (k=27) MainlyNice (k=27) 132.7 12.88 67.31 75.06 132.7 12.88 67.31 75.06
MainlyNice (k=27) TitForTat 135.6 3.83 67.33 77.61 133.6 4.80 66.86 76.82
MainlyNice (k=27) MainlyBad (k=72) 61.9 8.84 56.42 34.92 170.4 10.44 86.87 77.27
MainlyNice (k=27) Nice 179.8 4.33 71.92 100.00 105.3 6.50 55.26 70.20
TitForTat TitForTat 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
TitForTat MainlyBad (k=72) 87.6 7.05 81.94 40.00 92.1 7.03 83.34 41.70
TitForTat Nice 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00
MainlyBad (k=72) MainlyBad (k=72) 88.5 12.09 81.42 40.03 88.5 12.09 81.42 40.03
MainlyBad (k=72) Nice 222.0 8.20 88.80 100.00 42.0 12.30 38.68 28.00
Nice Nice 150.0 0.00 60.00 100.00 150.0 0.00 60.00 100.00

Table II: 2-players IPD, overall yield and achieve

Strategy yield achieve

Bad 100.00 43.09
GrimTrigger 76.91 77.89
Indifferent 70.73 54.95
MainlyBad (k=72) 82.56 49.87
MainlyNice (k=27) 58.17 58.53
Nice 49.29 71.93
TitFor2Tat 65.45 75.29
TitForTat 68.91 77.32



12 HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018

Table III: 50-players IPD, sorted by points, statistics

Points Coop. count Defect count
Strategy avg std yield achieve avg std avg std Coop. %

GrimTrigger 6406.5 80.89 77.66 73.21 1334.5 18.42 1115.5 18.42 54.47
GrimTrigger 6393.8 56.80 77.91 73.90 1317.6 21.68 1132.4 21.68 53.78
GrimTrigger 6385.3 72.00 77.06 73.85 1336.4 23.56 1113.6 23.56 54.55
GrimTrigger 6382.0 88.09 77.76 73.59 1327.7 23.79 1122.3 23.79 54.19
GrimTrigger 6380.4 92.53 78.39 73.35 1343.3 37.35 1106.7 37.35 54.83
TitForTat 5884.6 26.69 71.37 72.60 1664.8 10.76 785.2 10.76 67.95
TitForTat 5882.7 27.79 71.41 72.55 1662.7 14.49 787.3 14.49 67.87
TitForTat 5881.4 26.80 70.99 73.34 1665.1 11.69 784.9 11.69 67.96
TitForTat 5880.2 34.27 71.13 72.82 1662.7 14.85 787.3 14.85 67.87
TitForTat 5878.9 32.66 71.47 72.29 1660.8 13.31 789.2 13.31 67.79
TitForTat 5875.6 32.89 71.10 72.58 1661.3 13.60 788.7 13.60 67.81
TitForTat 5862.2 22.34 71.23 72.51 1654.7 9.78 795.3 9.78 67.54
TitForTat 5861.2 27.54 71.27 72.66 1655.7 10.52 794.3 10.52 67.58
TitFor2Tat 5648.6 16.61 67.62 72.29 1829.7 10.07 620.3 10.07 74.68
TitFor2Tat 5644.3 18.15 67.25 71.73 1834.4 11.92 615.6 11.92 74.87
TitFor2Tat 5639.4 18.24 67.14 72.01 1833.6 18.54 616.4 18.54 74.84
TitFor2Tat 5637.9 22.20 67.10 72.51 1821.5 14.67 628.5 14.67 74.35
TitFor2Tat 5636.4 34.72 67.09 72.63 1824.9 19.76 625.1 19.76 74.49
TitFor2Tat 5636.4 18.00 67.33 71.98 1825.7 8.56 624.3 8.56 74.52
TitFor2Tat 5621.5 29.34 67.45 71.36 1817.2 17.42 632.8 17.42 74.17
MainlyBad (k=78) 5456.8 40.52 85.00 49.18 545.4 22.11 1904.6 22.11 22.26
MainlyBad (k=85) 5424.8 59.18 89.74 47.57 373.9 17.92 2076.1 17.92 15.26
MainlyBad (k=81) 5416.4 60.69 87.56 47.69 469.9 15.43 1980.1 15.43 19.18
MainlyBad (k=81) 5411.3 65.52 87.63 48.21 459.6 19.84 1990.4 19.84 18.76
MainlyBad (k=70) 5396.5 63.52 80.99 50.32 728.7 17.36 1721.3 17.36 29.74
MainlyBad (k=97) 5387.7 64.01 97.66 45.52 74.5 6.52 2375.5 6.52 3.04
MainlyBad (k=99) 5379.8 62.25 99.21 43.99 26.3 5.77 2423.7 5.77 1.07
Bad 5362.4 78.10 100.00 44.00 0.0 0.00 2450.0 0.00 0.00
Bad 5359.2 41.10 100.00 44.33 0.0 0.00 2450.0 0.00 0.00
MainlyBad (k=98) 5352.7 35.40 98.74 43.58 48.7 5.46 2401.3 5.46 1.99
Bad 5343.2 41.91 100.00 43.87 0.0 0.00 2450.0 0.00 0.00
Bad 5330.8 33.93 100.00 43.51 0.0 0.00 2450.0 0.00 0.00
Bad 5322.0 21.00 100.00 43.61 0.0 0.00 2450.0 0.00 0.00
Indifferent 5275.9 89.52 69.73 53.26 1218.6 28.88 1231.4 28.88 49.74
Indifferent 5265.9 89.16 69.80 53.75 1219.9 21.74 1230.1 21.74 49.79
Indifferent 5265.5 67.17 69.57 53.43 1221.6 15.01 1228.4 15.01 49.86
Indifferent 5248.7 56.13 69.04 53.87 1222.9 21.45 1227.1 21.45 49.91
Indifferent 5240.5 62.17 69.48 52.91 1217.9 29.42 1232.1 29.42 49.71
Indifferent 5240.4 62.79 68.70 54.14 1220.1 32.81 1229.9 32.81 49.80
Indifferent 5232.4 82.32 70.66 54.88 1223.4 26.90 1226.6 26.90 49.93
MainlyNice (k=42) 5138.0 74.36 65.63 53.96 1421.1 25.18 1028.9 25.18 58.00
Nice 4948.5 38.81 46.50 67.35 2450.0 0.00 0.0 0.00 100.00
Nice 4943.7 28.55 45.92 67.43 2450.0 0.00 0.0 0.00 100.00
Nice 4942.5 42.83 46.37 67.76 2450.0 0.00 0.0 0.00 100.00
Nice 4941.6 46.10 46.37 68.24 2450.0 0.00 0.0 0.00 100.00
Nice 4940.1 32.53 46.17 67.22 2450.0 0.00 0.0 0.00 100.00
Nice 4926.0 43.24 46.05 66.86 2450.0 0.00 0.0 0.00 100.00
MainlyNice (k=17) 4760.4 67.95 52.93 59.70 2033.3 20.59 416.7 20.59 82.99
MainlyNice (k=3) 4695.9 121.06 45.29 60.44 2379.4 9.16 70.6 9.16 97.12
MainlyNice (k=8) 4592.4 108.72 48.55 61.11 2260.2 10.91 189.8 10.91 92.25

Table IV: 10-players IPD, static strategies, sorted by points, statistics

Strategy Points yield achieve C count D count Coop. %

TitForTat 946 76.89 64.34 254 196 56.44
TitForTat 946 76.89 64.34 254 196 56.44
TitForTat 946 76.89 64.34 254 196 56.44
TitForTat 946 76.89 64.34 254 196 56.44
Bad 866 100.00 38.49 0 450 0.00
Bad 866 100.00 38.49 0 450 0.00
Bad 866 100.00 38.49 0 450 0.00
Bad 866 100.00 38.49 0 450 0.00
Nice 750 33.33 55.56 450 0 100.00
Nice 750 33.33 55.56 450 0 100.00



BONETTO et al.: A STUDY ON THE ITERATED PRISONER’S DILEMMA 13

Figure 28: 10-players IPD, static strategies, software results [7]

Table V: rMPIPD, constant pop. of 50, strategy evolution through repetitions

↓ Strategy – Iter → 0 1 2 3 4

GrimTrigger 5 5 9 17 30
TitFor2Tat 7 7 8 6 2
TitForTat 8 8 15 19 14
Nice 6 6 3 0 0
MainlyNice (k=3) 1 1 1 0 0
MainlyNice (k=8) 1 1 0 0 0
MainlyNice (k=17) 1 1 0 0 0
MainlyNice (k=42) 1 1 1 1 1
Indifferent 7 7 3 0 0
MainlyBad (k=70) 1 1 0 0 0
MainlyBad (k=78) 1 1 1 0 0
MainlyBad (k=81) 2 2 1 1 0
MainlyBad (k=85) 1 1 0 0 0
MainlyBad (k=97) 1 1 1 1 0
MainlyBad (k=98) 1 1 1 1 1
MainlyBad (k=99) 1 1 1 1 1
Bad 5 5 5 3 1

Table VI: rMPIPD, constant pop. of 50, seed = 24, strategy evolution

↓ Strategy – Iter → 0 1 2 3 4 5 6 7

GrimTrigger 1 1 2 3 6 11 15 13
TitFor2Tat 5 5 3 2 0 0 0 0
TitForTat 9 9 14 23 35 35 35 37
Nice 3 3 2 1 1 0 0 0
MainlyNice (k=4) 1 1 1 1 0 0 0 0
MainlyNice (k=5) 1 1 1 1 0 0 0 0
MainlyNice (k=28) 1 1 1 1 0 0 0 0
MainlyNice (k=34) 2 2 2 2 0 0 0 0
Indifferent 5 5 3 2 2 0 0 0
MainlyBad (k=51) 1 1 1 1 0 0 0 0
MainlyBad (k=52) 1 1 0 0 0 0 0 0
MainlyBad (k=56) 1 1 1 0 0 0 0 0
MainlyBad (k=58) 1 1 1 0 0 0 0 0
MainlyBad (k=61) 1 1 0 0 0 0 0 0
MainlyBad (k=70) 1 1 1 0 0 0 0 0
MainlyBad (k=92) 2 2 1 1 0 0 0 0
MainlyBad (k=93) 1 1 2 1 1 0 0 0
MainlyBad (k=96) 1 1 1 0 0 0 0 0
MainlyBad (k=97) 1 1 2 2 1 1 0 0
Bad 11 11 11 9 4 3 0 0



14 HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018

Table VII: rMPIPD, constant pop. of 50, seed = 1209, strategy evolution

↓ Strategy – Iter → 0 1 2 3 4

GrimTrigger 1 1 1 2 3
TitFor2Tat 5 5 4 1 0
TitForTat 8 8 6 2 1
Nice 6 6 2 2 1
MainlyNice (k=4) 2 2 2 2 0
MainlyNice (k=12) 1 1 1 1 0
MainlyNice (k=24) 1 1 0 0 0
MainlyNice (k=31) 1 1 1 0 0
MainlyNice (k=34) 1 1 1 0 0
Indifferent 11 11 9 6 3
MainlyBad (k=58) 1 1 1 1 0
MainlyBad (k=63) 1 1 2 2 1
MainlyBad (k=74) 1 1 2 1 1
MainlyBad (k=76) 1 1 1 1 1
MainlyBad (k=82) 1 1 2 3 2
MainlyBad (k=99) 1 1 2 3 4
Bad 7 7 13 23 33

Table VIII: rMPIPD, increasing pop. (alternative 1), strategy evolution through repetitions

↓ Strategy – Iter → 0 1 2 3 4 5

GrimTrigger 5 9 18 35 66 125
TitFor2Tat 7 12 20 31 44 58
TitForTat 8 14 26 42 72 119
Nice 6 6 8 12 18 23
MainlyNice (k=3) 1 1 1 1 1 2
MainlyNice (k=8) 1 1 1 2 4 5
MainlyNice (k=17) 1 1 1 1 1 1
MainlyNice (k=42) 1 2 3 5 6 8
Indifferent 7 7 9 10 11 13
MainlyBad (k=70) 1 1 2 3 4 4
MainlyBad (k=78) 1 2 3 4 4 4
MainlyBad (k=81) 2 3 4 5 6 7
MainlyBad (k=85) 1 1 1 1 1 1
MainlyBad (k=97) 1 1 1 1 1 1
MainlyBad (k=98) 1 1 1 1 1 1
MainlyBad (k=99) 1 2 2 2 2 2
Bad 5 8 9 10 10 10

Population size 50 72 110 166 252 384

Table IX: rMPIPD, increasing pop. (alternative 2), strategy evolution through repetitions

↓ Strategy – Iter → 0 1 2 3 4 5

GrimTrigger 5 7 14 26 44 65
TitFor2Tat 7 12 17 22 27 34
TitForTat 8 14 24 35 42 51
Nice 6 7 7 8 9 10
MainlyNice (k=3) 1 1 1 1 2 3
MainlyNice (k=8) 1 1 1 1 1 1
MainlyNice (k=17) 1 1 1 1 1 1
MainlyNice (k=42) 1 2 2 2 3 4
Indifferent 7 7 9 11 15 19
MainlyBad (k=70) 1 1 1 1 1 1
MainlyBad (k=78) 1 2 2 2 2 3
MainlyBad (k=81) 2 3 4 5 5 5
MainlyBad (k=85) 1 1 2 2 3 3
MainlyBad (k=97) 1 1 1 1 1 1
MainlyBad (k=98) 1 1 2 3 4 4
MainlyBad (k=99) 1 2 2 3 4 4
Bad 5 9 11 13 15 19

Population size 50 72 101 137 179 228



BONETTO et al.: A STUDY ON THE ITERATED PRISONER’S DILEMMA 15

0 1 2 3 4 5
Time

0

10

20

30

40

50

60

Nu
m
be
r o
f s
tra
te
gi
es

Strategies evolution

GrimTrigger
TitFor2Tat
TitForTat
Nice

MainlyNice (k=3)
MainlyNice (k=8)
MainlyNice (k=17)
MainlyNice (k=42)

Indifferent
MainlyBad (k=70)
MainlyBad (k=78)

MainlyBad (k=81)
MainlyBad (k=85)
MainlyBad (k=97)

MainlyBad (k=98)
MainlyBad (k=99)
Bad

Figure 29: Evolution of an increasing pop., from 50 players (alternative 2)

Table X: rMPIPD, increasing pop. (alternative 3), strategy evolution through repetitions

↓ Strategy – Iter → 0 1 2 3 4 5

GrimTrigger 5 7 10 12 16 18
TitFor2Tat 7 14 26 42 70 113
TitForTat 8 16 32 64 128 256
Nice 6 11 20 31 42 56
MainlyNice (k=3) 1 1 1 1 1 1
MainlyNice (k=8) 1 1 1 1 1 1
MainlyNice (k=17) 1 1 1 1 1 1
MainlyNice (k=42) 1 1 1 1 1 1
Indifferent 7 11 17 26 31 36
MainlyBad (k=70) 1 1 1 1 1 1
MainlyBad (k=78) 1 1 1 1 1 1
MainlyBad (k=81) 2 2 2 2 2 2
MainlyBad (k=85) 1 1 1 1 1 1
MainlyBad (k=97) 1 1 1 1 1 1
MainlyBad (k=98) 1 1 1 1 1 1
MainlyBad (k=99) 1 1 1 1 1 1
Bad 5 10 16 21 26 32

Population size 50 81 133 208 325 523

0 1 2 3 4 5
Time

0

50

100

150

200

250

Nu
m
be
r o

f s
tra

te
gi
es

Strategies evolution

GrimTrigger
TitFor2Tat
TitForTat
Nice

MainlyNice (k=3)
MainlyNice (k=8)
MainlyNice (k=17)
MainlyNice (k=42)

Indifferent
MainlyBad (k=70)
MainlyBad (k=78)

MainlyBad (k=81)
MainlyBad (k=85)
MainlyBad (k=97)

MainlyBad (k=98)
MainlyBad (k=99)
Bad

Figure 30: Evolution of an increasing pop., from 50 players (alternative 3)



16 HIGH LEVEL PROGRAMMING – COMPUTATIONAL PHYSICS LAB, FALL 2018

Table XI: rMPIPD, changing strategies (alternative 1), strategy evolution through repetitions.
Blank cell means player not present. At the end, strategy changes count for each iteration.

↓ Strategy – Iter → 0 1 2 3 4 5 6 7

GrimTrigger 5 9 15 22 31 41 54 72
TitFor2Tat 7 12 17 23 34 50 87 129
TitForTat 8 14 16 20 32 56 82 132
Nice 6 6 8 9 12 13 14 15
MainlyNice (k=3) 1 1 1 1 1 1 1 1
MainlyNice (k=8) 1 1 1 1 1 1 1 1
MainlyNice (k=17) 1 1 1 2 2 2 2 3
MainlyNice (k=42) 1 2 3 6 9 12 12 12
Indifferent 7 7 9 11 12 14 18 24
MainlyBad (k=70) 1 1 1 1 3 4 6 9
MainlyBad (k=78) 1 2 2 2 3 3 3 4
MainlyBad (k=81) 2 3 4 5 5 5 5 6
MainlyBad (k=85) 1 1 1 2 3 3 3 3
MainlyBad (k=97) 1 1 1 1 1 1 1 1
MainlyBad (k=98) 1 1 1 1 1 1 1 1
MainlyBad (k=99) 1 2 2 2 2 2 2 2
Bad 5 8 10 11 12 13 14 14
MainlyNice (k=11) 1 2 2 2 2 3
MainlyNice (k=20) 1 2 3 4 5 7
MainlyNice (k=24) 1 1 2 2 5 6
MainlyNice (k=29) 1 1 1 1 3 5
MainlyNice (k=38) 1 2 2 3 4 4
MainlyNice (k=40) 1 3 5 8 9 14
MainlyNice (k=43) 1 1 1 3 6 14
MainlyBad (k=51) 1 3 5 6 9 13
MainlyBad (k=56) 1 2 3 4 5 8
MainlyBad (k=62) 1 2 2 3 3 4
MainlyBad (k=63) 1 2 4 4 5 7
MainlyBad (k=68) 1 1 1 5 8 13
MainlyBad (k=69) 1 3 4 5 6 11
MainlyBad (k=76) 1 1 1 1 1 4
MainlyBad (k=87) 1 1 3 4 4 4
MainlyNice (k=25) 1 1 1 1 3
MainlyNice (k=27) 1 1 2 3 3
MainlyNice (k=28) 1 1 1 2 5
MainlyNice (k=30) 1 1 2 4 7
MainlyNice (k=32) 1 1 4 5 7
MainlyNice (k=35) 1 1 2 2 3
MainlyNice (k=36) 1 2 2 2 4
MainlyBad (k=52) 1 2 2 6 10
MainlyBad (k=55) 1 2 2 5 8
MainlyBad (k=59) 1 3 4 6 7
MainlyBad (k=60) 1 2 5 10 15
MainlyBad (k=61) 1 4 7 8 14
MainlyBad (k=71) 1 1 1 4 5
MainlyBad (k=72) 1 1 1 2 5
MainlyBad (k=84) 1 1 2 4 6
MainlyBad (k=86) 2 4 4 4 4

Population size 50 72 108 164 257 385 575 868
To more cooperative 19 27 46 70 105 139 245 365
To less cooperative 19 26 46 63 101 160 216 342

↓ Strategy – Iter → 4 5 6 7

MainlyNice (k=7) 1 1 1 2
MainlyNice (k=23) 1 3 4 5
MainlyNice (k=34) 1 2 4 6
MainlyNice (k=37) 2 3 5 6
MainlyNice (k=39) 3 4 8 10
MainlyNice (k=46) 1 2 3 6
MainlyNice (k=47) 2 5 9 16
MainlyNice (k=49) 3 8 11 16
MainlyBad (k=54) 1 1 2 7
MainlyBad (k=66) 1 2 3 6
MainlyBad (k=67) 1 1 2 3
MainlyBad (k=73) 2 2 3 6
MainlyBad (k=74) 1 1 3 5
MainlyBad (k=77) 1 3 5 7
MainlyBad (k=80) 1 2 4 6
MainlyBad (k=90) 1 2 2 3
MainlyBad (k=94) 1 1 2 3
MainlyBad (k=95) 2 4 4 4
MainlyNice (k=15) 2 2 3
MainlyNice (k=16) 1 1 4
MainlyNice (k=22) 1 1 2
MainlyNice (k=26) 1 2 4
MainlyNice (k=31) 1 2 4
MainlyNice (k=33) 1 2 3
MainlyNice (k=41) 1 1 3
MainlyNice (k=44) 2 5 7
MainlyNice (k=45) 1 3 5
MainlyNice (k=48) 1 5 9
MainlyBad (k=57) 1 1 1
MainlyBad (k=64) 1 4 6
MainlyBad (k=65) 3 8 13
MainlyBad (k=82) 1 2 2
MainlyBad (k=88) 1 1 2
MainlyNice (k=5) 1 1
MainlyNice (k=13) 1 1
MainlyNice (k=18) 1 1
MainlyBad (k=53) 4 10
MainlyBad (k=58) 1 3
MainlyBad (k=75) 1 3
MainlyBad (k=89) 1 2
MainlyBad (k=91) 1 1
MainlyNice (k=10) 1
MainlyNice (k=12) 2
MainlyNice (k=19) 1
MainlyBad (k=79) 1
MainlyBad (k=83) 2
MainlyBad (k=92) 1
MainlyBad (k=93) 1



BONETTO et al.: A STUDY ON THE ITERATED PRISONER’S DILEMMA 17

Table XII: rMPIPD, changing strategies (alternative 2), strategy evolution through repetitions.
Blank cell means player not present. At the end, strategy changes count for each iteration.

↓ Strategy – Iter → 0 1 2 3 4 5 6 7

GrimTrigger 5 9 12 18 21 27 34 43
TitFor2Tat 7 12 23 32 36 38 48 61
TitForTat 8 14 22 26 34 44 59 79
Nice 6 6 9 9 10 10 10 10
MainlyNice (k=3) 1 1 1 1 1 1 1 1
MainlyNice (k=8) 1 1 1 1 1 1 1 1
MainlyNice (k=17) 1 1 1 1 1 1 1 1
MainlyNice (k=42) 1 2 2 3 4 5 5 6
Indifferent 7 7 7 9 12 18 25 35
MainlyBad (k=70) 1 1 1 2 3 4 6 12
MainlyBad (k=78) 1 2 2 2 3 4 5 6
MainlyBad (k=81) 2 3 4 6 8 10 13 15
MainlyBad (k=85) 1 1 1 2 4 5 6 8
MainlyBad (k=97) 1 1 2 3 5 6 7 9
MainlyBad (k=98) 1 1 1 1 1 1 1 1
MainlyBad (k=99) 1 2 2 2 2 2 2 2
Bad 5 8 9 14 25 41 66 110
MainlyNice (k=34) 1 2 2 4 5 7
MainlyNice (k=35) 1 1 4 6 8 11
MainlyNice (k=36) 1 2 5 8 10 14
MainlyNice (k=44) 1 2 3 4 5 7
MainlyNice (k=48) 2 2 4 7 9 14
MainlyBad (k=57) 1 2 4 8 11 16
MainlyBad (k=60) 1 2 3 5 6 11
MainlyBad (k=61) 1 1 2 4 6 11
MainlyBad (k=71) 1 2 4 5 8 12
MainlyNice (k=30) 1 2 2 2 2
MainlyNice (k=39) 3 5 8 11 15
MainlyNice (k=41) 1 2 3 4 6
MainlyNice (k=43) 1 2 3 4 5
MainlyNice (k=45) 1 3 5 8 10
MainlyNice (k=47) 1 2 4 8 13

Population size 50 72 110 161 245 373 553 833
To more cooperative 11 16 19 19 39 72 97 155
To less cooperative 11 24 38 55 63 93 139 204

↓ Strategy – Iter → 3 4 5 6 7

MainlyBad (k=55) 1 1 1 4 11
MainlyBad (k=56) 1 2 8 15 23
MainlyBad (k=62) 1 2 5 9 14
MainlyBad (k=64) 1 3 6 11 19
MainlyBad (k=72) 1 4 6 10 15
MainlyNice (k=37) 1 2 4 6
MainlyNice (k=38) 1 2 3 5
MainlyNice (k=46) 1 3 4 5
MainlyNice (k=49) 1 2 3 4
MainlyBad (k=52) 1 6 14 19
MainlyBad (k=53) 3 6 9 15
MainlyBad (k=54) 1 2 4 10
MainlyBad (k=58) 1 1 3 6
MainlyBad (k=59) 1 3 6 10
MainlyBad (k=67) 1 5 10 17
MainlyBad (k=68) 1 4 7 13
MainlyBad (k=69) 1 2 5 10
MainlyBad (k=74) 1 2 4 6
MainlyNice (k=20) 1 1 1
MainlyNice (k=27) 1 2 2
MainlyBad (k=51) 2 4 9
MainlyBad (k=63) 1 3 7
MainlyBad (k=65) 2 7 14
MainlyBad (k=66) 3 4 8
MainlyBad (k=75) 1 3 6
MainlyBad (k=77) 1 3 6
MainlyBad (k=80) 1 3 3
MainlyNice (k=26) 1 2
MainlyNice (k=29) 1 2
MainlyBad (k=79) 1 3
MainlyNice (k=31) 1
MainlyNice (k=40) 2
MainlyBad (k=73) 2
MainlyBad (k=82) 1
MainlyBad (k=86) 1
MainlyBad (k=92) 1

0 1 2 3 4 5 6 7
Time

0

20

40

60

80

100

Nu
m
be
r o
f s
tra
te
gi
es

Strategies evolution

GrimTrigger
TitFor2Tat
TitForTat
Nice
MainlyNice (k=3)
MainlyNice (k=8)
MainlyNice (k=17)
MainlyNice (k=42)
Indifferent
MainlyBad (k=70)
MainlyBad (k=78)
MainlyBad (k=81)
MainlyBad (k=85)
MainlyBad (k=97)

MainlyBad (k=98)
MainlyBad (k=99)
Bad
MainlyNice (k=34)
MainlyNice (k=35)
MainlyNice (k=36)
MainlyNice (k=44)
MainlyNice (k=48)
MainlyBad (k=57)
MainlyBad (k=60)
MainlyBad (k=61)
MainlyBad (k=71)
MainlyNice (k=30)
MainlyNice (k=39)

MainlyNice (k=41)
MainlyNice (k=43)
MainlyNice (k=45)
MainlyNice (k=47)
MainlyBad (k=55)
MainlyBad (k=56)
MainlyBad (k=62)
MainlyBad (k=64)
MainlyBad (k=72)
MainlyNice (k=37)
MainlyNice (k=38)
MainlyNice (k=46)
MainlyNice (k=49)
MainlyBad (k=52)

MainlyBad (k=53)
MainlyBad (k=54)
MainlyBad (k=58)
MainlyBad (k=59)
MainlyBad (k=67)
MainlyBad (k=68)
MainlyBad (k=69)
MainlyBad (k=74)
MainlyNice (k=20)
MainlyNice (k=27)
MainlyBad (k=51)
MainlyBad (k=63)
MainlyBad (k=65)

MainlyBad (k=66)
MainlyBad (k=75)
MainlyBad (k=77)
MainlyBad (k=80)
MainlyNice (k=26)
MainlyNice (k=29)
MainlyBad (k=79)
MainlyNice (k=31)
MainlyNice (k=40)
MainlyBad (k=73)
MainlyBad (k=82)
MainlyBad (k=86)
MainlyBad (k=92)

Figure 31: Evolution of an increasing pop., from 50 players, with changing strategies (alternative 2)


	Introduction
	The dilemma explained
	Strategies
	Two players IPD
	Multiple players IPD - Round-robin scheme
	Repeated multiple players IPD
	Static Population
	Increasing Population

	rMPIPD with changing strategies
	Machine Learning approaches
	Conclusions and future work
	References
	Appendix: Additional figures and tables of tournament results

