HUMAN DATA ANALYTICS, SPRING 2019

Going deep into Human Activity Recognition

Elia Bonetto and Filippo Rigotto
Department of Information Engineering, University of Padova — Via Gradenigo, 6/b, 35131 Padova, Italy
{eliabntt94,rigotto.filippo}@gmail.com

Abstract—In latest years, thanks to the increased number of
smartphones and wearable devices integrating IMUs, Human
Activity Recognition (HAR) has become a key research topic
in monitored and assisted living either for medical or tracking
reasons. First attempts provided manual feature crafting, fol-
lowed by analysis done either with deep neural networks or
other approaches like Hidden Markov models. More recently
instead, direct analysis on raw signals has been attempted. Here
we continue this trend by exploring some possible approaches
with convolutional and recurrent neural networks and look over
automatic feature extraction techniques, such as autoencoders.
Most of the datasets in this field are highly imbalanced and
some classes lack of enough data. To face this, we propose two
augmentation techniques for rebalancing. Finally, we introduce
new ways and metrics to select the best learning epoch to address
overfitting and get the best learning results overall. Our tests
confirm that augmenting the initial dataset is worth the effort,
and we achieve performance that surpass what is declared for
it. Moreover, we discovered that working with raw signals in
the sensor reference frame is better than working with their
transformation to the body frame. As for encoded data by means
of autoencoders, we could not find any performance improvement:
in some cases, worse results are obtained.

Index Terms—Activity recognition, inertial sensors, machine
learning, neural networks, autoencoders, deep classification

1. INTRODUCTION

HYSICAL activities recognition, commonly referred as
Human Activity Recognition (HAR), has gained momen-
tum as a key research area nowadays. Tracking and detecting
human activities is a relevant task for both trained personnel,
e.g. first responders and medical or military services, and for
common people: for fitness, for prevention or quick notification
of falls, for example in case of elderly people assistance.
HAR can be performed visually with the aid of many cameras
pointed to track people motion but this approach has privacy
issues and only works in restricted or indoor areas. Instead,
the use of inertial sensors (IMUs) worn by the users has less
drawbacks, it is more robust (for example, it does not rely on
the field of view of the camera), cheap and more ubiquitously
deployable thanks to the huge spreading of sensor-equipped
smartphones and watches [1]. IMUs are typically composed
of accelerometers, gyroscopes and magnetometers that sense
and periodically sample linear acceleration, angular velocity
and magnetic field variations in the three spatial directions,
all within the size of an open hand. To analyze and classify
the data stream offered by these sensors, features extraction
is needed and can be performed both manually, as in the
traditional approach by means for example of the Fourier
transform (FFT) [2] or statistical analysis, or by automatic

learning through neural network (NN) architectures, a rising
trend in the literature [1].

In this work, we focus on a specific dataset to evaluate the
current state of the art, comparing deep networks composed of
convolutional and recurrent layers, and we propose some new
architectures made as a combination of the previous models or
built around the autoencoder (AE) concept to enable automatic
feature extraction. Furthermore, we introduce some balancing
techniques for the dataset, trying to achieve better results overall.
Our proposals perform better with respect to the state of the
art on the considered dataset. We also manage to use a lighter
version than the original proposal for some of the considered
networks. Implementation is modular, to allow for the use with
other datasets, and open-source on GitHub, to allow external
contributions and future developments.

This work’s contributions can be summarized in:

« probing usefulness of sensor’s frame signal processing
« exploring data augmentation techniques that push forward
prediction accuracy
o defining and combining (new) models based on established
networks that can classify activities from inertial sensor’s
raw measurements
« exploring new metrics to select the best training epoch
for models, different from standard setups
« making use of the autoencoder architecture to extract
features to be fed to deep networks, support vector
machines and logistic regression
This report is structured as follows. In section I we review
the current state of the art. Our system’s pipeline is defined
in section III, preprocessing steps on the original signals’ data
of the reference dataset are detailed in section IV. Analyzed
architectures and learning parameters are presented in section V,
while in section VI we outline our results.

II. RELATED WORK

Activity recognition is a prolific research field and many
techniques and algorithms have been used to tackle the subject.
Delving into sensor-based HAR, the trend in the literature until
a few years ago, as per [3], was to manually craft features
and then process them by means of Hidden Markov Models
(HMM) [4], Principal Component Analysis (PCA), Support
Vector Machines (SVM), Bayesian Networks (BN) [5] or
Random Forest (RF) ensembles [6]. Features are extracted
using filters, Fourier transforms, moments or other statistical
properties (like mean and variance) of the signals [2]. In this
case a heavy preprocessing phase is needed, and these manual
features, apart from being most often poorly generalizable, may

© 2019 The authors. Licensed under Creative Commons Attribution — ShareAlike 4.0

https://github.com/eliabntt/deep_into_HAR
https://creativecommons.org/licenses/by-sa/4.0/deed.en

exclude some important information that can only be extracted
by using automatic methods [1]. Moreover, these methods
focus mainly on single-sequence classification, often lacking
the study of the temporal correlation between signals since
they rely on per-sequence handcrafted features [7]. Recent
advances in machine learning paved the way to raw signal
analysis, automatic feature extraction and classification. In this
regard, Wang et al. [1] very recently surveyed the literature
collecting both model architectures and popular datasets.
Deep convolutional neural networks (CNN) could learn
much more high-level and meaningful features while achieving
unparalleled performance: their key advantages are the ability to
capture local dependencies and resilience to scale changes [8]

thanks to their ability to extract hidden information from data.

Temporal 1D convolution is successfully used by Chen and
Xue, [9] who employ a deep CNN with small kernels on data
that come only from a single accelerometer. Even if it is a
promising approach, not considering also gyroscope data may
lead to underestimated results: accuracy is expected to be lower
when dealing with stationary activities. The authors in [10] do
the same, but they consider accelerometer vectors’ magnitude
instead of raw 3D data to reduce rotational interference. Moya
Rueda ef al. [11] extend the computation considering multiple
sensors and organizing data in sliding windows among the set
of sensors in parallel. The authors in [12] collect and merge
data from 5 sensors fixed to different parts of the body, and
compare a CNN, a MLP and a SVM: the deep network is
both faster and more accurate. 2D convolutions are used by
Bevilacqua et al. [13] to account for spatial and temporal
dependencies among signals. Accelerometer and gyroscope
data is stacked and organized in overlapping windows before
being fed into a 3-layers convolutional network with small
kernels and pooling layers, dropout [14] and a final 3-layers
fully-connected network. This novel approach leads to even
higher accuracy values. A further improvement by Ha et al. [15],
[16] consists in separating each sensor’s data with padding
and adjusting the filter size to not simultaneously perform
convolution over different sensors.

The introduction of recurrent networks (RNN), in particular
of Long Short-Term Memory (LSTM) [17] and Gated Recurrent
Unit (GRU) [18] cells, allowed to learn temporal sequences

dependencies more flawlessly by holding memory of past values.

Thanks to this, recurrent modules are good learners for IMU
sensor’s data that clearly depends not only from a single value,
but from a sequence [19], [20]. Both LSTM and GRU have been
developed to avoid the vanishing/exploding gradient problem
of RNNs, and the difference between them is the number of
available update gates.

In this field most works use LSTM networks [21]. Simple
vanilla approaches like stacking LSTM gates one after another
showed an improvement over previous CNNs methods thanks
to their relation to time sequences, even if working on plain raw
signals. An alternative is to use a bidirectional network, that
is, two LSTMs layers working one on the original sequence
(learning from future) and the other one on the reversed version
(learning from past), trying to be more robust and essentially
doing data augmentation inside the network [7]. This approach
is the less adopted because it is highly dependent on the

HUMAN DATA ANALYTICS, SPRING 2019

number of units of the LSTM cell and so to the input size and
the different datasets. Last, experiments mixing convolutional
layers before LSTM(s) classification layers took place [22].
Taking advance from both representation brought by CNNs and
temporal dependency by RNNs, results show an improvement
with respect to previous methods: a proof that feature extraction
techniques before RNNs could be a way to obtain major
improvements on HAR and other time-related tasks. GRU
layers have been less used for this task, probably because they
showed lower overall performance [23], [24].

III. PROCESSING PIPELINE

As mentioned in the introduction, this work uses sensor data
collected by the Institute of Communications and Navigation,
German Aerospace Center (DLR)', base of the work done in [2].
Nonetheless, source code is modular, to enable the possibility
to use other datasets, like the well known from UCI2. The
processing phase of raw signals data, needed to build an usable
dataset to feed the networks, is kept at a minimum without
using for example filters or noise reduction techniques to avoid
distorting too much the dataset, to further prove the usability
of non-elaborated features. In the original version, the dataset
is not balanced w.r.t. the classes frequency. To contrast this,
after the generation of training and test sets, augmentation is
experimented and used to create two further dataset versions:
using a hand-crafted method consisting of random data rotation
and shuffling, and an algorithm suited for this task such as
ADASYN [25].

In the first part of this work, classification of data is
performed using common architectures inspired from the
literature: 1D and 2D CNNs, LSTM and GRU-based RNNs.

A second part of the study involves the generation of features
from data thanks both to a stack of convolutional layers and
to autoencoders, made of convolutional, LSTM or both kind
of layers. Classification is then performed by means of the
previous defined networks, generating a mixture of possible
configurations, and of other classification algorithms like SVM
and logistic regression (LR), using a stochastic gradient descent
(SGD) optimization method.

To select the best training epoch we have introduced some
brand-new metrics to counteract eventual overfitting problems,
variability of the training progress and to take into account not
only accuracy but also precision and recall scores. Validation
split was not carried out due to the small dataset size and the
fact that augmentation only occurs on the training set: validating
over an augmented dataset could have led to overfitting the
data, resulting in poor performance.

A visual representation of the full process is in Fig. 1.

IV. SIGNALS PREPROCESSING

The dataset contains IMU sensor measurements of several
scheduled movements and activities taken and labelled by
different people. The XSENS MTX IMU device is positioned
on the belt of the user, and collects data at a rate of 100Hz and

Thttps://www.dlr.de/kn/desktopdefault.aspx/tabid- 12705/22182_read- 50785
Zhttps://archive.ics.uci.edu/ml/datasets/human-+activity+recognition+using+
smartphones

https://www.dlr.de/kn/desktopdefault.aspx/tabid-12705/22182_read-50785
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

BONETTO & RIGOTTO: GOING DEEP INTO HUMAN ACTIVITY RECOGNITION

Parameters

. Trainin
definition &

Evaluation

SVM/LR

Fig. 1: Full processing pipeline from raw signals’ dataset to networks evaluation.

Raw Prepro-
signals cessing Models
AE
Raw . .
sienals Flattening Framing
Splitting Augmen- Norrpal—
tation 1zation

Fig. 2: Data preprocessing steps.

each measure consists of the snapshot time plus raw readings
of an accelerometer, a gyroscope and a magnetometer.

Each sensor outputs 3D data, according to the device refer-
ence frame, and also computes the necessary transformation
matrix T" of shape 3 x 3 to change the reference frame into a
body-aligned frame. Mathematically, for each sensor data v,:

Ty Ts
Y| = Up = Tvs =T Ys
Zp Zs

The original 17 tracked activities are grouped and reduced
to 8 classes, mislabeling in classification are fixed. The
composition of samples in the dataset after relabeling is reported
in the second column of Tab. 1.

Tab. 1: Minutes for each activity in several versions of the
dataset: the original, after framing and after augmentation.

Time
Activity orig. framing augm.

B running 15 30 68
[walking 72 144 144
B jumping 8 15 64
B standing 121 241 241
B sitting 59 117 117
B lying 28 56 76
[] falling 2 4 60
[transition 60 — —

total 365 609 772

Transitions are pruned from the dataset, and the rest of the
data is sorted by activity and then framed in windows of length
128 and an overlapping rate of 50%. This also implies padding
sensor data with zeros to the nearest subsequent multiple of
64, to have entirely filled windows. Updated times for each
activity are in the third column of Tab. 1.

The 70-30% split of the dataset to obtain training and test
sub-sets is done before the eventual augmentation of data,

which is performed only on the training set: it is easy to notice
from Tab. 1 that classes in the original dataset are not balanced.
Two different techniques have been applied to balance them:

e using ADASYN [25] from imblearn®: an adaptive al-
gorithm that generate samples according to a density
distribution, computed for every minority class. It forces
the learning algorithm to focus on difficult examples

« hand-made rotation of some random samples (axis and
angle are both randomized) and shuffling inside a window

In both cases the dataset is rebalanced (only the training set) by
bringing the three less-represented classes to have around 30%
of the number of samples of the most represented class, which
is standing. There are some caveats: activities lying and sitting
are not randomly rotated as this may cause labeling errors due
to confusion with similar activities like standing, and activities
jumping and falling are not subject to permutation because
there may be temporal correlation inside the window (a jump
read reversed in time may be confused with a fall). Adjusted
times for both processes are in the fourth column of Tab. 1.

Eventually, data is normalized using training set’s mean and
standard deviation: this is a common procedure in machine
learning that might improve accuracy and training.

V. LEARNING FRAMEWORK

We developed networks that works directly processing raw
framed signals, and networks that combine automatic feature
extraction prior to classification. For “plain” models we have
ultimately chosen four alternatives, based on, but not equal to,
previous works in the literature, as they differ in combination
and number of layers, kernels size and other parameters. For the
second part, we explored the combination of CNN and LSTM
layers, and we also implemented three alternatives through
autoencoders, to be used with SVM, LR and the previously
defined networks as classifiers, except one for reasons that will
be clear in section V-B2.

Combining all these numbers to the six prepared datasets
— with and without normalization, manually augmented, aug-
mented using ADASYN — for each of the two reference frames,
the total number of configurations is [5+ 3 x 4] x 6 x 2 = 204%,
excluding SVM and LR tests.

Practically, all the networks are implemented as Keras [26]
models (using TensorFlow [27] backend). Training parameters
like the optimizer (SGD’, RMSprop [29] or Adam [30]), the
loss type, the learning rate, its decay and momentum, the

3https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_
sampling. ADASYN.html

45 networks, 3 AEs over all but one networks, 6 datasets, 2 reference frames

SFor more information, we refer the reader to [28].

https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.ADASYN.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.ADASYN.html

number of epochs and batch size are specified and saved
separately from models: this modularity allows to perform
tests on the same model with different configurations.

A. Plain models

Here we review the best models we selected. These are only
a small part of all the structures we investigated: much more
models can be found in the companion Jupyter notebooks,
especially regarding fully connected networks (not included
here) and CNNs, since experiments with LSTM and GRU
units are mostly related to the number of nodes in the cell
and to dropout rate values. All these models are learned with
the Adam optimizer and categorical crossentropy loss. If not
differently specified, default values are employed for learning
rate (0.001), decay rate (0) and other parameters. Investigating
hyperparameters in this kind of networks is still a major
problem, as pointed out in [7]. Our values agree with the
guidelines defined in the paper. Dropout modules are used for
regularization and to avoid overfitting data.

1) ID CNN: We developed networks based on one or two
convolutional layers, plus one or two dense (fully connected)
layer followed by softmax activation to have class probabilities,
with optional L2 regularization on convolution kernels and
dropout after every layer. As per standard practices, each
convolutional layer is followed by batch normalization [31],
ReLU activation and max-pooling. We additionally included
models from surveyed papers [9], [11], whose drawbacks have
been evidenced in section II. A single convolutional layer is
not capable to learn from data, overfitting occurs and validation
loss always grows. Adding more than one dense layer at the
end leads to longer learning time with no substantial gain in
accuracy. Regularization is not much helpful in CNNs, what
keeps the loss stable is dropout, for which the rate is set by trial
and error. The selected model, which has the highest overall
and class-wise accuracies, uses two layers, dropout and a final
dense layer, and is reported below.

def Conv1D_2C1D_mode
return Sequential ([
ConvlD (filters=64, kernel_size=5,

input_shape=input_shape),

(input_shape, num_classes=7):

BatchNormalization (axis=1),
A tion("relu’),
Dropout (0.3), # rate

MaxPoolinglD (pool_size=2),
Conv1D (32, 5),
B "Normalization (axis=1)
A vation (' relu’),
Dropout (0.3),
MaxPoolinglD (2),
Flatten(),
Dense (num_classes, activation=’softmax’)
], name=’Conv1D-2C1D-do0.3")

2) 2D CNN: We investigated networks from papers [13]
and [15]. 2D convolution can be performed by reshaping data
to have the three sensors’ signals stacked. Input data has shape
(?,9,128,1) where 128 is due to the framing operation and

the last number is the number of channels, only 1 in this case.

While the first network is not brilliant and in our preliminary
tests achieves only 86% accuracy, the second instead is a
promising setup: as mentioned in section II, 95% accuracy is
reached by operating the trick to interpose zero-padding to

HUMAN DATA ANALYTICS, SPRING 2019

avoid 2D convolution kernels to sweep more than one signal at
a time. Due to padding, input shape becomes (?,18,128,1).
As the selected model, it is reported below.

def Con _model (input_shape, num_classes=7):
return Sequential ([
Conv2D (filters=32, kernel_size=(4,4),
activation=’'relu’, input_shape=input_shape),

2D, a

MaxPooling2D (pool_size=(3,3), strides=(1,1)),
v2D (64, (5,5), activation=’'relu’),
MaxPooling2D((3,3),(1,1)),
Flatten(),
128, activation=’'relu’),

ut (0.5),
se (num_classes, activation=’softmax’)
], name=’Conv2D-Ha’)

3) LSTM: Many tests brought us to set on the model with
two LSTM layers, due to improved performance w.r.t. the
versions with only one layer. The bidirectional configuration is
highly dataset-related and very difficult to tune, especially in
the number of cells [7]. Models with three layers are too slow
and do not improve on the selected model, for this dataset.

Different to what is done in [20], we dropped one LSTM
layer and added dropout instead of manually inserting an L2
regularization term in the structure of the LSTM.

def TwoLSTM model (input_shape, num_classes=7):
return Sequential ([
LSTM (512, return_sequences=True,
batch_input_shape=input_shape),
Dropout (0.2),
LSTM (512, return_sequences=False),
Dense (num_classes, activation=’softmax’)
1, name='TwoLSTM’)

4) GRU: In this case the one-layer model achieves the same
performance of the two-layers one, but in a much longer time
(circa 3x). The model with three GRUs instead overfit the
data, reaching an accuracy peak slightly lower from the two-
layer model, and then performance degrades and loss grows.
In this last case a study on the learning rate decay would be
worth, but nonetheless taking into account the LSTM network’s
results, the fact that the final model already reach nice overall
performance, plus the time needed to train such a network leads
in this case to drop further experiments on this architecture.

def TwoGRU_model (input_shape, num_classes=7):

return Sequential ([

GRU (512, return_sequences=True,

input_shape=input_shape),

Dropout (0.2),

GRU (512, input_shape=input_shape),

Dense (num_classes, activation=’softmax’)
1, name=’TwoGRU’)

B. Combined models

We explored the possibility of automatically learn features
from raw signals by combining a CNN with a LSTM cell and
by means of several autoencoder architectures.

1) CNN-LSTM stack: One “mixed” model is obtained by
stacking together convolutional and recurrent layers. The
scope is to get the best from both, so to get sort of a
“preprocessing” step thanks to convolutions, with the goal
of learning features that are then handled and classified by
LSTMs, thanks to their time-related capabilities. In this case the
input has been reshaped in folds of size (?,4,32,9) to use

BONETTO & RIGOTTO: GOING DEEP INTO HUMAN ACTIVITY RECOGNITION

TimeDistributed, that apply the same Dense operation
to every timestep of a 3D tensor®. Moreover, this resulted in
an overall speed-up of LSTM layer’s training time.

In [22] the defined network is bigger, featuring two more
convolutional layers and one more LSTM, and lack the presence
of either dropout and pooling layers. Moreover, the settings
about learning and decay rate are different: we use respectively
le—4 and 0O instead of 1le—2 and 0.9.

def CNN_LSTM model (input_shape,
return Sequential ([
TimeDistributed(Conv1D (256, 1,
activation='relu’), input_shape=input_shape),
TimeDistributed(Conv1D (256, 3,
activation='relu’)),
TimeDistributed (Dropout (0.1)),
TimeDi ibuted (MaxPo nglb(2)),
TimeDistributed(Flatten()),
LSTM(128),
Dense (num_classes,
], name=’CNN-LSTM’)

num_classes=7) :

activation=’'softmax’)

2) Autoencoders: They should provide an improved repre-
sentation of the input data by using learned encoded features
instead of raw data. They have been constructed by employing
only convolutional layers, only LSTM cells and both of them.
As a first step, data has to be de-framed by a flattening-like op-
eration obtaining sets of shape (?7,1,9) from (?,128,9),
that is, we process each single measure separately. We used
the defined networks to perform learning also over the original
framed dataset and by expanding the last dimension instead of
the first one (obtaining a final shape of (?,1,128x9)), but
without obtaining good results.

def CNN_AE_model (input_shape,
return Sequential ([
encoder
Conv1D (128, 1, activation=’relu’,
input_shape=input_shape),
ConvlD (64, 1, activation=’relu’,
decoder
ConvlD (64, 1, activation=’relu’,
(128, 1, activation=’'relu’,
Conv1D (num_features, 1,
], name=’CNN_AE’)

num_features) :

padding='same’,
padding='same’),
padding='same’),

padding=’same’),
activation=’softmax’

Conv1D

def v _AE_model (input_shape, num_features):
return Sequential ([
encoder
LSTM (128, activation=’relu’,
return_sequences=True,
input_shape=input_shape),
LSTM (64, activation=’'relu’
return_sequences=True),
decoder
LSTM (128, activation=’relu’,
return_sequences=True),
TimeDistributed (Dense (num_features
activation=’softmax’))
], name=’LSTM-AE’)

This is implicit since Keras 2.0 but we prefer to specify it anyway.
7«9 is used as wildcard to indicate an unknown number of samples as it
depends on the dataset.

def CNN_LSTM_AE_model (input_shape, num_features):
return Sequential ([
encoder
Convl1D (128, 1, activation=’relu’,
input_shape=input_shape),
Convl1D (64, 1, activation=’relu’),
decoder
LSTM (128, activation='relu’,
return_sequences=True),
TimeDistributed (Dense (num_features,
activation=’softmax’))
1, name=’'CNN-LSTM-AE’)

After autoencoders have been trained, the best model with
respect to accuracy is selected, the decoder side is discarded,
the encoded sequences are reshaped back to the original shape
and then fed into the CNN-LSTM stack and each of the
classification networks defined in V-A, except the 2D CNN:
its particular configuration and padding as a fundamental and
logical preprocessing step make it senseless to use this network
coupled with autoencoder features.

We further tried also to perform classification through SVMs
and LR thanks to a SGD approximation, defined in scikit-
learn®. In this case we find out that alpha, the multiplier of
the regularization term that is also used to compute the initial
learning rate, should be in the range [le-5, 1e-3], with most
of the best performance obtained using le-4. We combined
both SVM and LR with different kind of regularization: L1,
L2 and Elastic Net’ have been tested. Overall the possible
combinations are 3 X 2 x 6 = 36, to be added to the previous
204 tests.

sklearn.linear_model.SGDClassifier (loss="hinge’,
penalty='12’, alpha=0.0001)

for loss: hinge -> SVM, log -> LR

for penalty: ’12’, '11’, ’'elasticnet’

C. Metrics

As a multi-class classification problem, to select the best
training point (i.e. epoch), beside accuracy, precision and recall
metrics are equally meaningful. We very briefly recall their
definitions, using Tab. 2: the ratio of true positives to the
total predicted positives, and the ratio of true positives to all
predictions classified in the same class. The FI-score is the
harmonic average between the two. Mathematically,

TP TP

PxR
Pzi e —
TP+ FP R TP+ FN

1=2X ——
P+R

Tab. 2: Sample confusion matrix: actual vs predicted class.

| Pos Neg
Pos | TP FN
Neg | FP TN

Because of the imbalanced dataset, overall accuracy may be
misleading since less frequent classes have low impact on the
final value, even if for example classification for these samples
fails most of the times. This is enhanced by the fact that test

8https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
SGDClassifier.html

9A linear combination of L1 and L2 regularization terms.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

set cannot be augmented. Because of that, we will focus both
on global and per-class metrics, hoping to find a model that
maximize each of accuracy values.

We introduced these metrics in the training and evaluation
phases for all our models, and set up to save a snapshot of
the model during training when any of the following quantities
(computed on the test set) reach a new maximum:

e accuracy: A

e accuracy over loss: AoL = A/L

o sum of acc., precision and recall: APR = (A4 P+ R)

« the previous sum, over loss: APRoL = (A+ P+R) /L
Additionally, the model is also saved when at the end of an
epoch accuracy is not higher but near current maximum, and
loss is lower than the current stored value.

We choose the sum strategy to globally account for each
of the metrics. We understand that having a precise scope for
the work, for example like fall detection'”, this reasoning may
change a lot, due to possible allowance of false positives and
absolute inadmissibility of false negatives. But this is a general
work without a detailed scope, and it is indifferent for our
objectives to have higher precision or recall.

We choose the division by the loss to account for the fact
that it is also an important value to track during training: more
often a model with slightly less accuracy but lower loss is
more powerful than a model with slightly higher accuracy and
high loss. This is strictly related to the concept of overfitting.

VI. RESULTS

The 12 generated datasets, as described in section IV, are:

o w.r.t. two reference frames (sensor and body)

« with and without normalization

« optionally augmented manually or with ADASYN
The results are explained in a top-down fashion to progressively
prune out combinations. Subsequent considerations still apply
to previously excluded parts. The complete set of results can be
generated using the notebooks. Note that for Keras models and
scikit-learn’s SGD implementations accuracy equals weighted
recall, so we will use this as comparison metric.

A. Reference frame

Comparing the same networks, trained over the same type of
dataset, we can note how performance are superior with sensor-
referenced data, instead of using data referenced to the body
frame, and it is easy to see how even plain global accuracy
is lower on such datasets, an example is in Tab. 3. This is a
surprising aspect because the coordinate transformation should
act as a stabilizer to equalize measurements and generalize
them as noted in [4].

B. Normalization

As common practice suggest we performed normalization
on datasets using training set’s mean and standard deviation.
In general, by looking at global accuracy, there is no strict
rule to say that using it is better than leaving data as is. The

10Fall detection may be re-thought as a binary classification problem.

HUMAN DATA ANALYTICS, SPRING 2019

Tab. 3: Best accuracy value (%) on some datasets, body (B~*)
and sensor (S+) reference frame. Mixed is CNN-LSTM, due
to space constraints.

Dataset | ConviD Conv2D 2LSTM 2GRU Mixed
BADA | 98.062 95528 98.085 98.085 98.447
SADA | 99.194 97.898 99.194 99.159 99.451
BFRA | 97933 95166 98.120 98.143 98.435
SFRA | 99.159 98.073 99.159 99.113 99.358

results are so near that could even be linked to stochasticity
of trainings and to highly imbalanced classes. From Tab. 4 we
can note how there are cases like CNN-LSTM and SADA(n)
where normalized dataset goes better, and cases like TwoGRU
and SAHC(n) where it is the opposite. So we cannot come up
with a definitive answer for this normalization question.

Tab. 4: Best accuracy value (%) for sensor-referenced datasets:
ADASYN-augmented (SADA), manually augmented (SAHC),
normalized but not augmented (SFRA). Not normalized versions
of these three datasets are SADAn, SAHCn and SFRAnN.

Dataset ‘ ConvlD Conv2D 2LSTM 2GRU Mixed
SADA 99.194 97.898 99.194 99.159 99.451
SADAn | 99.066 98.003 99.241 99.288 99.183
SAHC 97.957 98.284 99.206 97.840 99.416
SAHCn | 99.043 98.260 99.229 99.253 99.183
SFRA 99.159 98.073 99.159 99.113 99.358
SFRAn | 98.984 98.272 98.564 99.206 99.113

C. Augmentation

Evaluation is problematic also in this section: from Tab. 4 we
can note how augmented datasets do not always perform better
than non-augmented ones. What is noted instead is that at least
one of the two augmented versions performs better than “plain”
ones. This behavior was expected, because augmentation is
performed to enhance less represented classes and as such they
do not have great influence on a global metric. A proof can
be seen in Fig. 3 and Fig. 4 where clearly jumping and falling
reaches way better per-class accuracies. Moreover, ADASYN
achieve better results w.r.t. manual augmentation in all networks
but Conv2D, considering both normalized and non-normalized
versions. This also proves augmentation is useful and worth.
Paired with previous results, here are the best models overall:
TwoGRU over SADAn, CNN-LSTM over SADA.

D. Models and metrics

By looking at Tab. 5, we notice how:

o defined metrics may couple together: this happens when
the model is saved at the same epoch according to two
different metrics. Most of the times A couples with
APR while AoL couples with APRoL, but there may be
exceptions like CNN-LSTM on SAHCn, where A differs
from APR.

o generally, accuracy A (weighted recall) gives best results.

o the best model is CNN-LSTM.

BONETTO & RIGOTTO: GOING DEEP INTO HUMAN ACTIVITY RECOGNITION

Tab. 5: Saving epoch, per-class accuracy, global accuracy, weighted and standard precision and recall (%), for the two most
prominent models. Each value is reported according to the four metrics presented in section V-C (top to bottom, same order).

Model E | M [[[| [[0 | Acc. WPrec. Prec. Recall
2GRU 101 | 100.000 99.014 93.897 99.588 99.637 99.874 87.273 | 99.288 99.284 99.293 99.282
84 | 100.000 99.113 90.141 99.706 99.577 99.748 90.909 | 99.264 99.262 99.293 99.247
(SADAD) 101 | 100.000 99.014 93.897 99.588 99.637 99.874 87.273 | 99.288 99.284 99.293 99.282
84 | 100.000 99.113 90.141 99.706 99.577 99.748 90.909 | 99.264 99.262 99.293 99.247
Mixed 27 | 100.000 99.211 92488 99.794 99.758 99.874 94.545 | 99.451 99.454 99.464 99.452
21 | 100.000 99.113 92488 99.676 99.819 99.874 92.727 | 99.381 99.382 99.394 99.382
(SADA) 27 | 100.000 99.211 92488 99.794 99.758 99.874 94.545 | 99.451 99.454 99.464 99.452
21 | 100.000 99.113 92488 99.676 99.819 99.874 92727 | 99.381 99.382 99.394 99.382
] 0.0024 0.019 0 0 0 0.0024 1
5 0.95 I ‘Vr
= 00074 0003 0 000099 08 0o
] 0.85 o
g - 0.028 0.047 0.0047 0 0.019 [oe E GS TLasltnllgsgs 055
é'a . — - E .75 ——— Training accuracy
g2 } £ - —— Test accuracy
T E | 04 m 0.25 A and APR save point
5 | ’ P oo 2 o2 Aol and APRol save point
015
E- 0 [} 0 ™ 01 |
E - 0.018 0.018 011 0.036 DUZ _’\ T ﬂ Jil_)\
running walking jumping Pre;:?;d;ncg\ass stting lying Talling oo [" ZICI 1'-1ID Ei'.'l B;:l 160 12'0 lﬂiCI
Epoch

Fig. 3: Confusion matrix of Conv2D model, SAHC dataset.

- 10

0.0095 0.031 0 0 0 0

000099 00015 000043 000049 08

o 0 00047

0.0015

True class
sitting standing jumping walking running

0.0006

0 0 o 00013

ying

0 011 0073 0036 0036

falling

falling

standing sitting Iying

Predicted class

wnning valking jumping

Fig. 4: Confusion matrix of Conv2D model, SFRA dataset.

In general, our models achieve high accuracy within a small
number of epochs ranging from a few to a hundred or so. 2D
CNN and CNN-LSTM exhibit slight overfitting (see Fig. 5),
that could be tackled with additional regularization or learning
rate’s decay. Anyway, models are saved before this happens.

Only comparing the two best models in Tab. 4, CNN-LSTM
performs slightly better, even if the 0.163% gained (from
99.288% to 99.451%) is a stunning 22.9% of the remaining
available accuracy. Taking the maximum and minimum values,
we span from 97.840% to 99.451%, covering about 74.6% of
the remaining achievable accuracy.

As per Tab. 6, comparing results with the work done in [2],

Fig. 5: CNN-LSTM, SADA dataset: training accuracy and loss.

which is based on Dynamic unrestricted Bayesian Networks,
we achieve better precision and recall in most of the classes,
especially in the augmented ones, with almost all our best
configurations.

Finally, in general TwoLSTM, TwoGRU and CNN-LSTM
are the models that perform, regardless of normalization and
augmentation, always better than Conv2D-Ha and almost
constantly better than Conv1D-2CI1D.

As for timings, we notice in Tab. 7 that recurrent networks
are much slower with respect to convolutional models, yielding
only a low overall performance increase. Notably, thanks to
pooling and convolutional layers, the combined model actually
achieves the best training speed overall, letting us conclude
along with previous considerations that it is the best in our
pool of analyzed networks.

E. Autoencoders

Training of autoencoders is good and fast: as reported in
Tab. 8, they reach 99% accuracy on test set with a loss of 0.25
in less than five epochs.

Instead, application of encoded data to the networks have not
brought the expected improvements in any datasets or methods
we used. In general we noted comparable, and in some cases
slightly lower, performance than the same networks trained on
the original dataset. A few examples can be seen in Tab. 9.

Apart from being time costly to permute all of them,
applications of SVM and LR in combination with L1, L2 and

HUMAN DATA ANALYTICS, SPRING 2019

Tab. 6: Comparison between our best networks and datasets combination and original results from [2] based on Dynamic
Bayesian Networks: precision (first) and recall (second) values for each class. Best results in bold (virtually rounded).

Model ‘ B running [walking [jumping [standing [sitting B lying [] falling
ConvID-2CID | 9791 99.76 98.87 99.11 98.99 92.02 99.33 99.65 99.88 99.70 99.37 99.37 89.80 80.00
Conv2D-Ha 96.95 97.64 98.28 98.37 90.20 86.39 98.97 98.94 98.32 98.73 99.25 99.62 80.00 72.73
TwoLSTM 98.60 100 99.41 99.16 98.03 9343 99.15 99.50 99.70 99.52 99.87 99.37 86.44 92.73
TwoGRU 99.06 100 99.26 99.01 95.69 93.90 99.44 99.59 99.52 99.64 99.50 99.87 96.00 87.27
CNN-LSTM 97.47 100 99.41 99.21 98.99 9249 99.56 99.79 99.82 99.76 100 99.87 92.86 94.55
BN [2] 100 93 98 100 93 93 100 98 97 100 100 98 80 100

Tab. 7: Mean sample processing time and epoch duration, SAHC
dataset, 27611 samples. Benchmark on dual-core 2.30GHz CPU
and NVIDIA® T4.

‘Conle Conv2D 2LSTM 2GRU Mixed

235us 219us 175us
6.6s 6.0s 4.8s

2ms
53.8s

3ms
75s

Sample
Epoch

Tab. 9: Comparison between models trained on encoded data
and on the original data.

Model ‘ Dataset AE DS Acc. AE Acc.
ConvlD SAHC LSTM 99.416 98.751
TwoGRU | BFRA CNN 98.085 96.298

Mixed SADA CNN-LSTM 99451 98.459

Tab. 8: Accuracy and loss of trained AEs, for some datasets.

Dataset | CNN LSTM CNN-LSTM
BAHC | 0.996 0250 0.994 0250 0.996 0.250
BFRA | 0.994 0.812 0993 0.812 0.993 0.812
SADA | 0.996 0.581 0.955 0.586 0.997 0.581
SAHC | 0996 0385 0.995 0.385 0.995 0.385
SFRA | 0.997 0.793 0.994 0.793 0.996 0.793
SFRAn | 0.986 12.101 0.986 12.101 0.998 12.099

Elastic Net regularization terms do not provide good results:
models tend to well learn long and stable activities, while
being worse with running, jumping or falling (see Fig. 6). We
reached a top value of 90% global test accuracy on a specific
combination of AE and LR model. Furthermore, there is no
clear linking between performance and LR or SVM or with
respect to regularization terms, which makes essential to loop
all combinations to see the best one.

The pattern of results obtained over each dataset and network
is in accordance with our previous findings: these methods

running 0064 015 O 0 0 00095
. - 0.8
valking - 0.003 0021 0043 0029 0 000049
., lumping- 026 015 0.033 0.0047 0.0047 0.028 06
a
q
Y dtanding - 0 0.021 00041 0065 O 0
= - 0.4
sitting -0.0006 0.028 0003 0085 00012 0
lying -0.0013 0 00025 0O 0.0025 -0z
falling - 0036 018 02 0018 0055 013 | 038
]]] . -00
z 2 2 2 g g g
[=%]
E = E = E= = =
2 2 = g

Predicted class

Fig. 6: SVM with L2 regularization, CNN-LSTM encoding,
SAHC dataset.

cannot compete with the previously defined ones, and in our
implementation it is better to process raw signals than to build
methods on encoded features.

VII. CONCLUDING REMARKS

We delved into HAR testing combinations of learning
methods and datasets. We found both the applied preprocessing
steps to be useful, especially the augmentation techniques. Many
more of them can be applied, like adding noise to existing data,
several ADASYN variations, more effective manual operations
or with different quantities and class relative percentages.
Moreover, it is not clear enough whether normalization is
necessary and useful in this particular case. Our study lack
an investigation about learning and decay rate and newly
introduced metrics have not brought significant improvements
in our experiments: probably this may change introducing a
validation subset.

Transformations between sensor and body frames are proba-
bly much more effective when facing a multi-sensor system
and less when dealing with only a single device. If this trend is
confirmed, it would be interesting, in a multi-sensor scenario,
to separately classify activities for each sensor and then merge
together the results.

Evaluations evidenced the mixed convolutional-recurrent
architecture to be the best network to tackle the problem.
This confirms that mixing architectures is a promising way
to proceed both in terms of performance and time efficiency,
which is greatly reduced despite having recurrent cells. Our
architecture is smaller than the one defined in [22], pointing
out a possible reduction also on their use case.

We also used autoencoders made of several kind of layers
to extract features but results did not improve upon previous
findings and we obtained worse results using SVMs and LR.
We were not able to use the initial framed dataset, or to project
along the third dimension instead of the first, and there is space
to understand what will be the best way to treat encoded data,
i.e. by applying specific networks, Conditional Random Fields

BONETTO & RIGOTTO: GOING DEEP INTO HUMAN ACTIVITY RECOGNITION

(CRF) or RF classifiers, instead of SVM and LR, leaving space
for possible improvements.

While fulfilling this report, we learned the power of RNNs
on time sequences, along with common guidelines in dataset
preparation (framing, normalization and augmentation) and in
defining and adjusting trainings’ and networks’ parameters.
Notably, even simple networks can achieve stunning results
and outperform even complex traditional approaches.

[1]

[2

—

[3]

[4

[l

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[16]

REFERENCES

J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep
learning for sensor-based activity recognition: A survey,” Pattern
Recognition Letters, vol. 119, pp. 3 — 11, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016786551830045X

K. Frank, M. J. V. Nadales, P. Robertson, and M. Angermann, “Reliable
Real-Time Recognition of motion related human activities using MEMS
inertial sensors,” in JON GNSS, Sep. 2010.

O. D. Lara and M. A. Labrador, “A Survey on Human Activity
Recognition using Wearable Sensors,” IEEE Communications Surveys
Tutorials, vol. 15, no. 3, pp. 1192-1209, 2013.

B. Florentino-Liafio, N. O’Mahony, and A. Artés-Rodriguez, “Human
activity recognition using inertial sensors with invariance to sensor
orientation,” in 3rd International Workshop on Cognitive Information
Processing (CIP), May 2012, pp. 1-6.

K. Altun and B. Barshan, “Human Activity Recognition Using
Inertial/Magnetic Sensor Units,” in Proceedings of the First International
Conference on Human Behavior Understanding (HBU), 2010, pp. 38-51.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1881331.1881338
Z. Feng, L. Mo, and M. Li, “A Random Forest-based ensemble method
for activity recognition,” in 2015 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug.
2015, pp. 5074-5077.

N. Y. Hammerla, S. Halloran, and T. Pl6tz, “Deep, Convolutional, and
Recurrent Models for Human Activity Recognition Using Wearables,”
in Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI), 2016, pp. 1533—1540. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3060832.3060835

M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu,
and J. Zhang, “Convolutional Neural Networks for human activity
recognition using mobile sensors,” in 6th International Conference on
Mobile Computing, Applications and Services (MobiCASE), Nov. 2014,
pp. 197-205.

Y. Chen and Y. Xue, “A Deep Learning Approach to Human Activity
Recognition Based on Single Accelerometer,” in IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Oct. 2015, pp.
1488-1492.

Song-Mi Lee, Sang Min Yoon, and Heeryon Cho, “Human activity
recognition from accelerometer data using Convolutional Neural Network,”
in IEEE International Conference on Big Data and Smart Computing
(BigComp), Feb. 2017, pp. 131-134.

F. Moya Rueda, R. Grzeszick, G. Fink, S. Feldhorst, and M. ten Hompel,
“Convolutional Neural Networks for Human Activity Recognition Using
Body-Worn Sensors,” Informatics, vol. 5, no. 2, p. 26, May 2018.
[Online]. Available: http://dx.doi.org/10.3390/informatics5020026

T. Zebin, P. J. Scully, and K. B. Ozanyan, “Human activity recognition
with inertial sensors using a deep learning approach,” in IEEE SENSORS,
Oct. 2016, pp. 1-3.

S. Ha and S. Choi, “Convolutional neural networks for human activity
recognition using multiple accelerometer and gyroscope sensors,” in
International Joint Conference on Neural Networks (IJCNN), Jul. 2016,
pp. 381-388.

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

A. Bevilacqua, K. MacDonald, A. Rangarej, V. Widjaya, B. Caulfield,
and T. Kechadi, “Human Activity Recognition with Convolutional Neural
Networks,” in European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD),
Sep. 2018. [Online]. Available: arxiv.org/abs/1906.01935

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929-1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastaval4a.html

S. Ha, J. Yun, and S. Choi, “Multi-modal Convolutional Neural Networks
for Activity Recognition,” in /EEE International Conference on Systems,
Man, and Cybernetics (SMC), Oct. 2015, pp. 3017-3022.

S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural
computation, vol. 9, pp. 1735-80, Dec. 1997.

K. Cho, B. van Merrienboer, C. Giilcehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” 2014. [Online]. Available:
http://arxiv.org/abs/1406.1078

D. Singh, E. Merdivan, I. Psychoula, J. Kropf, S. Hanke, M. Geist,
and A. Holzinger, “Human Activity Recognition using Recurrent
Neural Networks,” in International Cross-Domain Conference for
Machine Learning and Knowledge Extraction, 2018. [Online]. Available:
http://arxiv.org/abs/1804.07144

S. W. Pienaar and R. Malekian, “Human Activity Recognition Using
LSTM-RNN Deep Neural Network Architecture,” 2019. [Online].
Available: http://arxiv.org/abs/1905.00599

Y. Guan and T. Plotz, “Ensembles of Deep LSTM Learners for Activity
Recognition using Wearables,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies (IMWUT), vol. 1, no. 2,
p- 1-28, Jun. 2017.

F. J. Ordéfiez and D. Roggen, “Deep Convolutional and LSTM
Recurrent Neural Networks for Multimodal Wearable Activity
Recognition,” Sensors, vol. 16, no. 1, 2016. [Online]. Available:
https://www.mdpi.com/1424-8220/16/1/115

J. Park, K. Jang, and S. Yang, “Deep neural networks for activity
recognition with multi-sensor data in a smart home,” in IEEE 4th World
Forum on Internet of Things (WF-IoT), Feb. 2018, pp. 155-160.

D. Arifoglu and H. Bouchachia, “Activity Recognition and Abnormal Be-
haviour Detection with Recurrent Neural Networks,” Procedia Computer
Science, vol. 110, pp. 86-93, Dec. 2017.

Haibo He, Yang Bai, E. A. Garcia, and Shutao Li, “ADASYN: Adaptive
synthetic sampling approach for imbalanced learning,” in 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), Jun. 2008, pp. 1322-1328.

F. Chollet et al., “Keras,” 2015. [Online]. Available: https://keras.io

M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems,” 2015. [Online]. Available: http://tensorflow.org

)

S. Ruder, “An overview of gradient descent optimization algorithms,’
2016. [Online]. Available: http://arxiv.org/abs/1609.04747

A. Graves, “Generating Sequences With Recurrent Neural Networks,
2013. [Online]. Available: http://arxiv.org/abs/1308.0850

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,
in 3rd International Conference on Learning Representations (ICLR),
May 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,” in
Proceedings of the 32nd International Conference on Machine
Learning (ICML), vol. 37, 2015, pp. 448-456. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3045118.3045167

5

)

http://www.sciencedirect.com/science/article/pii/S016786551830045X
http://dl.acm.org/citation.cfm?id=1881331.1881338
http://dl.acm.org/citation.cfm?id=3060832.3060835
http://dx.doi.org/10.3390/informatics5020026
arxiv.org/abs/1906.01935
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1804.07144
http://arxiv.org/abs/1905.00599
https://www.mdpi.com/1424-8220/16/1/115
https://keras.io
http://tensorflow.org
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=3045118.3045167

	Introduction
	Related work
	Processing pipeline
	Signals preprocessing
	Learning framework
	Plain models
	1D CNN
	2D CNN
	LSTM
	GRU

	Combined models
	CNN-LSTM stack
	Autoencoders

	Metrics

	Results
	Reference frame
	Normalization
	Augmentation
	Models and metrics
	Autoencoders

	Concluding remarks
	References

